Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros








Intervalo de ano de publicação
2.
Int J Biol Macromol ; 280(Pt 1): 135596, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276894

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidize polysaccharides, leading to their cleavage. LPMOs are classified into eight CAZy families (AA9-11, AA13-17), with the functionality of AA16 being poorly characterized. This study presents biochemical and structural data for an AA16 LPMO (PnAA16) from the marine sponge symbiont Peniophora sp. Phylogenetic analysis revealed that PnAA16 clusters separately from previously characterized AA16s. However, the structural modelling of PnAA16 showed the characteristic immunoglobulin-like fold of LPMOs, with a conserved his-brace motif coordinating a copper ion. The copper-bound PnAA16 showed greater thermal stability than its apo-form, highlighting copper's role in enzyme stability. Functionally, PnAA16 demonstrated oxidase activity, producing 5 µM H2O2 after 30 min, but showed 20 times lower peroxidase activity (0.27 U/g) compared to a fungal AA9. Specific activity assays indicated that PnAA16 acts only on cellohexaose, generating native celloligosaccharides (C3 to C5) and oxidized products with regioselective oxidation at C1 and C4 positions. Finally, PnAA16 boosted the activity of a cellulolytic cocktail for cellulose saccharification in the presence of ascorbic acid, hydrogen peroxide, or both. In conclusion, the present work provides insights into the AA16 family, expanding the understanding of their structural and functional relationships and biotechnological potential.

4.
Enzyme Microb Technol ; 180: 110498, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182429

RESUMO

Dienelactone hydrolase (DLH) is one of numerous hydrolytic enzymes with an α/ß-hydrolase fold, which catalyze the hydrolysis of dienelactone to maleylacetate. The DLHs share remarkably similar tertiary structures and a conserved arrangement of catalytic residues. This study presents the crystal structure and comprehensive functional characterization of a novel thermostable DLH from the bacterium Hydrogenobacter thermophilus (HtDLH). The crystal structure of the HtDLH, solved at a resolution of about 1.67 Å, exhibits a canonical α/ß-hydrolase fold formed by eight ß-sheet strands in the core, with one buried α-helix and six others exposed to the solvent. The structure also confirmed the conserved catalytic triad of DHLs formed by Cys121, Asp170, and His202 residues. The HtDLH forms stable homodimers in solution. Functional studies showed that HtDLH has the expected esterase activity over esters with short carbon chains, such as p-nitrophenyl acetate, reaching optimal activity at pH 7.5 and 70 °C. Furthermore, HtDLH maintains more than 50 % of its activity even after incubation at 90 °C for 16 h. Interestingly, HtDLH exhibits catalytic activity towards polyethylene terephthalate (PET) monomers, including bis-1,2-hydroxyethyl terephthalate (BHET) and 1-(2-hydroxyethyl) 4-methyl terephthalate, as well as other aliphatic and aromatic esters. These findings associated with the lack of activity on amorphous PET indicate that HtDLH has characteristic of a BHET-degrading enzyme. This work expands our understanding of enzyme families involved in PET degradation, providing novel insights for plastic biorecycling through protein engineering, which could lead to eco-friendly solutions to reduce the accumulation of plastic in landfills and natural environments.


Assuntos
Hidrolases de Éster Carboxílico , Estabilidade Enzimática , Especificidade por Substrato , Cristalografia por Raios X , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Ésteres/metabolismo , Ésteres/química , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Conformação Proteica , Concentração de Íons de Hidrogênio , Cinética , Hidrólise , Domínio Catalítico , Temperatura
5.
Sci Total Environ ; 949: 174876, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067601

RESUMO

Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling.


Assuntos
Biodegradação Ambiental , Microbiota , Plásticos , Plásticos/metabolismo , Microbiologia do Solo , Polietilenotereftalatos/metabolismo , Poluentes do Solo/metabolismo , Polímeros/metabolismo , Bactérias/metabolismo , Bactérias/genética , Plásticos Biodegradáveis/metabolismo , Consórcios Microbianos , Pseudomonas putida/metabolismo , Pseudomonas putida/genética
6.
Commun Biol ; 7(1): 704, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851817

RESUMO

Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.


Assuntos
Aspergilose , Aspergillus fumigatus , Sirtuínas , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimologia , Sirtuínas/genética , Sirtuínas/metabolismo , Virulência , Animais , Camundongos , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Acetilação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Mariposas/microbiologia
7.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38921393

RESUMO

Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a ß-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.

8.
J Fungi (Basel) ; 10(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38667937

RESUMO

In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of A. fumigatus BGC discovery and find that initial advances centered around the commonly expressed SMs where chemical structure informed rationale identification of the producing BGC (e.g., gliotoxin, fumigaclavine, fumitremorgin, pseurotin A, helvolic acid, fumiquinazoline). Further advances followed the transcriptional profiling of a ΔlaeA mutant, which aided in the identification of endocrocin, fumagillin, hexadehydroastechrome, trypacidin, and fumisoquin BGCs. These SMs and their precursors are the commonly produced metabolites in most A. fumigatus studies. Characterization of other BGC/SM pairs required additional efforts, such as induction treatments, including co-culture with bacteria (fumicycline/neosartoricin, fumigermin) or growth under copper starvation (fumivaline, fumicicolin). Finally, four BGC/SM pairs were discovered via overexpression technologies, including the use of heterologous hosts (fumicycline/neosartoricin, fumihopaside, sphingofungin, and sartorypyrone). Initial analysis of the two most studied A. fumigatus isolates, Af293 and A1160, suggested that both harbored ca. 34-36 BGCs. However, an examination of 264 available genomes of A. fumigatus shows up to 20 additional BGCs, with some strains showing considerable variations in BGC number and composition. These new BGCs present a new frontier in the future of secondary metabolism characterization in this important species.

9.
Sci Rep ; 14(1): 7375, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548777

RESUMO

The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteômica , Pandemias
10.
Protein Expr Purif ; 216: 106415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38104791

RESUMO

Cutinases are serine esterases that belong to the α/ß hydrolases superfamily. The natural substrates for these enzymes are cutin and suberin, components of the plant cuticle, the first barrier in the defense system against pathogen invasion. It is well-reported that plant pathogens produce cutinases to facilitate infection. Fusarium verticillioides, one important corn pathogens, is an ascomycete upon which its cutinases are poorly explored. Consequently, the objective of this study was to perform the biochemical characterization of three precursor cutinases (FvCut1, FvCut2, and FvCut3) from F. verticillioides and to obtain structural insights about them. The cutinases were produced in Escherichia coli and purified. FvCut1, FvCut2, and FvCut3 presented optimal temperatures of 20, 40, and 35 °C, and optimal pH of 9, 7, and 8, respectively. Some chemicals stimulated the enzymatic activity. The kinetic parameters revealed that FvCut1 has higher catalytic efficiency (Kcat/Km) in the p-nitrophenyl-butyrate (p-NPB) substrate. Nevertheless, the enzymes were not able to hydrolyze polyethylene terephthalate (PET). Furthermore, the three-dimensional models of these enzymes showed structural differences among them, mainly FvCut1, which presented a narrower opening cleft to access the catalytic site. Therefore, our study contributes to exploring the diversity of fungal cutinases and their potential biotechnological applications.


Assuntos
Ascomicetos , Fusarium , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/química , Fusarium/genética
11.
Sci Rep ; 13(1): 19182, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932303

RESUMO

Simultaneous intracellular depolymerization of xylo-oligosaccharides (XOS) and acetate fermentation by engineered Saccharomyces cerevisiae offers significant potential for more cost-effective second-generation (2G) ethanol production. In the present work, the previously engineered S. cerevisiae strain, SR8A6S3, expressing enzymes for xylose assimilation along with an optimized route for acetate reduction, was used as the host for expressing two ß-xylosidases, GH43-2 and GH43-7, and a xylodextrin transporter, CDT-2, from Neurospora crassa, yielding the engineered SR8A6S3-CDT-2-GH34-2/7 strain. Both ß-xylosidases and the transporter were introduced by replacing two endogenous genes, GRE3 and SOR1, that encode aldose reductase and sorbitol (xylitol) dehydrogenase, respectively, and catalyse steps in xylitol production. The engineered strain, SR8A6S3-CDT-2-GH34-2/7 (sor1Δ gre3Δ), produced ethanol through simultaneous XOS, xylose, and acetate co-utilization. The mutant strain produced 60% more ethanol and 12% less xylitol than the control strain when a hemicellulosic hydrolysate was used as a mono- and oligosaccharide source. Similarly, the ethanol yield was 84% higher for the engineered strain using hydrolysed xylan, compared with the parental strain. Xylan, a common polysaccharide in lignocellulosic residues, enables recombinant strains to outcompete contaminants in fermentation tanks, as XOS transport and breakdown occur intracellularly. Furthermore, acetic acid is a ubiquitous toxic component in lignocellulosic hydrolysates, deriving from hemicellulose and lignin breakdown. Therefore, the consumption of XOS, xylose, and acetate expands the capabilities of S. cerevisiae for utilization of all of the carbohydrate in lignocellulose, potentially increasing the efficiency of 2G biofuel production.


Assuntos
Saccharomyces cerevisiae , Xilosidases , Saccharomyces cerevisiae/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Xilitol/metabolismo , Oligossacarídeos/metabolismo , Fermentação , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Xilosidases/metabolismo , Acetatos/metabolismo
12.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37808717

RESUMO

Protein acetylation is a crucial post-translational modification that controls gene expression and a variety of biological processes. Sirtuins, a prominent class of NAD + -dependent lysine deacetylases, serve as key regulators of protein acetylation and gene expression in eukaryotes. In this study, six single knockout strains of fungal pathogen Aspergillus fumigatus were constructed, in addition to a strain lacking all predicted sirtuins (SIRTKO). Phenotypic assays suggest that sirtuins are involved in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. AfsirE deletion resulted in attenuation of virulence, as demonstrated in murine and Galleria infection models. The absence of AfSirE leads to altered acetylation status of proteins, including histones and non-histones, resulting in significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.

13.
Biotechnol Biofuels Bioprod ; 16(1): 5, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624471

RESUMO

BACKGROUND: Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds. RESULTS: Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2. CONCLUSIONS: The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.

14.
Green Chem ; 24(12): 4845-4858, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35813357

RESUMO

Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in lignocellulose degradation, suggesting hereto unknown enzymatic activities in their digestome. Herein, we demonstrate that an ancient redox-active enzyme encoded by the lower termite Coptotermes gestroi, a Cu/Zn superoxide dismutase (CgSOD-1), plays a previously unknown role in plant biomass degradation. We show that CgSOD-1 transcripts and peptides are up-regulated in response to an increased level of lignocellulose recalcitrance and that CgSOD-1 localizes in the lumen of the fore- and midguts of C. gestroi together with termite main cellulase, CgEG-1-GH9. CgSOD-1 boosts the saccharification of polysaccharides by CgEG-1-GH9. We show that the boosting effect of CgSOD-1 involves an oxidative mechanism of action in which CgSOD-1 generates reactive oxygen species that subsequently cleave the polysaccharide. SOD-type enzymes constitute a new addition to the growing family of oxidases, ones which are up-regulated when exposed to recalcitrant polysaccharides, and that are used by Nature for biomass degradation.

15.
Microbiol Spectr ; 10(3): e0212521, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35658600

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (AnLPMO9s), along with an AA3 cellobiose dehydrogenase (AnCDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (AnLPMO9C, AnLPMO9F and AnLPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions. AnLPMO9s deletion and overexpression studies corroborate functional data. The abundantly secreted AnLPMO9F is a major component of the extracellular cellulolytic system, while AnLPMO9G was less abundant and constantly secreted, and acts preferentially on crystalline regions of cellulose, uniquely displaying activity on highly crystalline algae cellulose. Single or double deletion of AnLPMO9s resulted in about 25% reduction in fungal growth on sugarcane straw but not on Avicel, demonstrating the contribution of LPMO9s for the saprophytic fungal lifestyle relies on the degradation of complex lignocellulosic substrates. Although the deletion of AnCDH1 slightly reduced the cellulolytic activity, it did not affect fungal growth indicating the existence of alternative electron donors to LPMOs. Additionally, double or triple knockouts of these enzymes had no accumulative deleterious effect on the cellulolytic activity nor on fungal growth, regardless of the deleted gene. Overexpression of AnLPMO9s in a cellulose-induced secretome background confirmed the importance and applicability of AnLPMO9G to improve lignocellulose saccharification. IMPORTANCE Fungal lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that boost plant biomass degradation in combination with glycoside hydrolases. Secretion of LPMO9s arsenal by Aspergillus nidulans is influenced by the substrate and time of induction. These findings along with the biochemical characterization of novel fungal LPMO9s have implications on our understanding of their concerted action, allowing rational engineering of fungal strains for biotechnological applications such as plant biomass degradation. Additionally, the role of oxidative players in fungal growth on plant biomass was evaluated by deletion and overexpression experiments using a model fungal system.


Assuntos
Aspergillus nidulans , Oxigenases de Função Mista , Aspergillus nidulans/genética , Celulose/química , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Polissacarídeos , Secretoma
16.
Appl Microbiol Biotechnol ; 106(7): 2503-2516, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352150

RESUMO

The biocatalytic production of fuels and chemicals from plant biomass represents an attractive alternative to fossil fuel-based refineries. In this context, the mining and characterization of novel biocatalysts can promote disruptive innovation opportunities in the field of lignocellulose conversion and valorization. In the present work, we conducted the biochemical and structural characterization of two novel hydroxycinnamic acid catabolic enzymes, isolated from a lignin-degrading microbial consortium, a feruloyl-CoA synthetase, and a feruloyl-CoA hydratase-lyase, named LM-FCS2 and LM-FCHL2, respectively. Besides establishing the homology model structures for novel FCS and FCHL members with unique characteristics, the enzymes presented interesting biochemical features: LM-FCS2 showed stability in alkaline pHs and was able to convert a wide array of p-hydroxycinnamic acids to their respective CoA-thioesters, including sinapic acid; LM-FCHL2 efficiently converted feruloyl-CoA and p-coumaroyl-CoA into vanillin and 4-hydroxybenzaldehyde, respectively, and could produce vanillin directly from ferulic acid. The coupled reaction of LM-FCS2 and LM-FCHL2 produced vanillin, not only from commercial ferulic acid but also from a crude lignocellulosic hydrolysate. Collectively, this work illuminates the structure and function of two critical enzymes involved in converting ferulic acid into high-value molecules, thus providing valuable concepts applied to the development of plant biomass biorefineries. KEY POINTS: • Comprehensive characterization of feruloyl-CoA synthetase from metagenomic origin. • Novel low-resolution structures of hydroxycinnamate catabolic enzymes. • Production of vanillin via enzymatic reaction using lignocellulosic hydrolysates.


Assuntos
Lignina , Metagenoma , Escherichia coli/genética , Hiperlipidemia Familiar Combinada , Lignina/metabolismo , Solo
17.
Front Bioeng Biotechnol ; 10: 825981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242749

RESUMO

The engineering of xylo-oligosaccharide-consuming Saccharomyces cerevisiae strains is a promising approach for more effective utilization of lignocellulosic biomass and the development of economic industrial fermentation processes. Extending the sugar consumption range without catabolite repression by including the metabolism of oligomers instead of only monomers would significantly improve second-generation ethanol production This review focuses on different aspects of the action mechanisms of xylan-degrading enzymes from bacteria and fungi, and their insertion in S. cerevisiae strains to obtain microbial cell factories able of consume these complex sugars and convert them to ethanol. Emphasis is given to different strategies for ethanol production from both extracellular and intracellular xylo-oligosaccharide utilization by S. cerevisiae strains. The suitability of S. cerevisiae for ethanol production combined with its genetic tractability indicates that it can play an important role in xylan bioconversion through the heterologous expression of xylanases from other microorganisms.

18.
Protein Expr Purif ; 190: 105994, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655732

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are metalloenzymes that cleave structural polysaccharides through an oxidative mechanism. The enzymatic activity of LPMOs relies on the presence of a Cu2+ histidine-brace motif in their flat catalytic surface. Upon reduction by an external electron donor and in the presence of its co-substrates, O2 or H2O2, LPMOs can generate reactive oxygen species to oxidize the substrates. Fungal and bacterial LPMOs are involved in the catabolism of polysaccharides, such as chitin, cellulose, and hemicelluloses, and virulence mechanisms. Based on the reports on the discovery of LPMOs from the family AA15 in termites, firebrats, and flies, the functional role of the LPMO in the biosphere could expand, as these enzymes may be correlated with chitin remodeling and molting in insects. However, there is limited knowledge of AA15 LPMOs due to difficulties in recombinant expression of soluble proteins and purification protocols. In this study, we describe a protocol for the cloning, expression, and purification of insect AA15 LPMOs from Arthropoda, mainly from termites, followed by the expression and purification of an AA15 LPMO from the silkworm Bombyx mori, which contains a relatively high number of disulfide bonds. We also report the recombinant expression and purification of a protein with homology to AA15 family from the western European honeybee Apis mellifera, an LPMO-like enzyme lacking the canonical histidine brace. Therefore, this work can support future studies concerning the role of LPMOs in the biology of insects and inspire molecular entomologists and insect biochemists in conducting activities in this field.


Assuntos
Abelhas/genética , Escherichia coli , Expressão Gênica , Proteínas de Insetos , Oxigenases de Função Mista , Animais , Abelhas/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Insetos/biossíntese , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
20.
Int J Biol Macromol ; 186: 909-918, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274400

RESUMO

A purified exo-polygalacturonase of Neosartorya glabra (EplNg) was successfully characterized. EplNg native presented 68.2 kDa, with 32% carbohydrate content. The deglycosylated form showed 46.3 kDa and isoelectric point of 5.4. The identity of EplNg was confirmed as an exo-polygalacturonase class I (EC 3.2.1.67) using mass spectrometry and Western-Blotting. Capillary electrophoresis indicated that only galacturonic acid was released by the action of EplNg on sodium polypectate, confirming an exoenzyme character. The structural model confers that EplNg has a core formed by twisted parallel ß-sheets structure. Among twelve putative cysteines, ten were predicted to form disulfide bridges. The catalytic triad predicted is composed of Asp223, Asp245, and Asp246 aligned along with a distance in 4-5 Å, suggesting that EplNg probably does not perform the standard inverting catalytic mechanism described for the GH28 family. EplNg was active from 30 to 90 °C, with maximum activity at 65 °C, pH 5.0. The Km and Vmax determined using sodium polypectate were 6.9 mg·mL-1 and Vmax 690 µmol·min-1.mg-1, respectively. EplNg was active and stable over a wide range of pH values and temperatures, confirming the interesting properties EplNg and provide a basis for the development of the enzyme in different biotechnological processes.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Catálise , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Ácidos Hexurônicos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Pectinas/metabolismo , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA