Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 368: 33-46, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963427

RESUMO

The accumulation of lipid droplets in hepatocytes is a key feature of drug-induced liver injury (DILI) and can be induced by a subset of hepatotoxic compounds. In the present study, we optimized and evaluated an in vitro technique based on the fluorescent dye Nile Red, further named Nile Red assay to quantify lipid droplets induced by the exposure to chemicals. The Nile Red assay and a cytotoxicity test (CTB assay) were then performed on cells exposed concentration-dependently to 60 different compounds. Of these, 31 were known to induce hepatotoxicity in humans, and 13 were reported to also cause steatosis. In order to compare in vivo relevant blood concentrations, pharmacokinetic models were established for all compounds to simulate the maximal blood concentrations (Cmax) at therapeutic doses. The results showed that several hepatotoxic compounds induced an increase in lipid droplets at sub-cytotoxic concentrations. To compare how well (1) the cytotoxicity test alone, (2) the Nile Red assay alone, and (3) the combination of the cytotoxicity test and the Nile Red assay (based on the lower EC10 of both assays) allow the differentiation between hepatotoxic and non-hepatotoxic compounds, a previously established performance metric, the Toxicity Separation Index (TSI) was calculated. In addition, the Toxicity Estimation Index (TEI) was calculated to determine how well blood concentrations that cause an increased DILI risk can be estimated for hepatotoxic compounds. Our findings indicate that the combination of both assays improved the TSI and TEI compared to each assay alone. In conclusion, the study demonstrates that inclusion of the Nile Red assay into in vitro test batteries may improve the prediction of DILI compounds.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fígado Gorduroso , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado Gorduroso/induzido quimicamente , Hepatócitos , Humanos , Oxazinas/toxicidade
2.
Toxicol In Vitro ; 81: 105344, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35263627

RESUMO

Bile acids (BA) are known to influence the susceptibility of hepatocytes to chemicals. We investigated the cytotoxicity of 18 compounds with known hepatotoxicity status and pharmacokinetics in cultivated primary human hepatocytes with and without the addition of a BA mix to the cell culture medium. This BA mix consisted of physiological ratios of the most abundant human BA at a cholestatic sum concentration of 0.5 mM, which corresponds to 50% of the EC10 (cytotoxicity) of the mix. The BA mix decreased the EC10 of 7 compounds by a factor greater than 1.5, but also increased the EC10 of 5 compounds. The compounds with increased susceptibility include the known hepatotoxicants and BSEP/MRP2 inhibitors rifampicin, ketoconazole, atorvastatin, and cyclosporin A. However, the cytotoxicity of some non-hepatotoxic compounds was also enhanced, among them glucose, which is not known to be an inhibitor of canalicular bile acid export. A recently established technique to quantify how well hepatotoxic and non-hepatotoxic compounds are separated by an in vitro test indicated that the addition of the BA mix did not improve separation. In conclusion, the addition of BA to cultivated hepatocytes leads to a complex situation with increased and decreased susceptibilities depending on the specific compound.


Assuntos
Ácidos e Sais Biliares , Colestase , Técnicas de Cultura de Células , Células Cultivadas , Hepatócitos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA