Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cancer Cell ; 42(8): 1336-1351.e9, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39029462

RESUMO

The POU2F3-POU2AF2/3 transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we identify a specific dependence of the POU2F3 molecular subtype of SCLC (SCLC-P) on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. Treatment of SCLC-P cells with a proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases evicts POU2F3 and its coactivators from chromatin and attenuates downstream signaling. B cell malignancies which are dependent on the POU2F1/2 cofactor, POU2AF1, are also sensitive to mSWI/SNF ATPase degraders, with treatment leading to chromatin eviction of POU2AF1 and IRF4 and decreased IRF4 signaling in multiple myeloma cells. An orally bioavailable mSWI/SNF ATPase degrader significantly inhibits tumor growth in preclinical models of SCLC-P and multiple myeloma without signs of toxicity. This study suggests that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Fator 2 de Transcrição de Octâmero
2.
Mod Pathol ; 37(8): 100540, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901674

RESUMO

Nephrogenic adenoma (NA) is a benign, reactive lesion seen predominantly in the urinary bladder and often associated with antecedent inflammation, instrumentation, or an operative history. Its histopathologic diversity can create diagnostic dilemmas and pathologists use morphologic evaluation along with available immunohistochemical (IHC) markers to navigate these challenges. IHC assays currently do not designate or specify NA's potential putative cell of origin. Leveraging single-cell RNA-sequencing technology, we nominated a principal (P) cell-collecting duct marker, L1 cell adhesion molecule (L1CAM), as a potential biomarker for NA. IHC characterization revealed L1CAM to be positive in all 35 (100%) patient samples of NA; negative expression was seen in the benign urothelium, benign prostatic glands, urothelial carcinoma (UCA) in situ, prostatic adenocarcinoma, majority of high-grade UCA, and metastatic UCA. In the study, we also used single-cell RNA sequencing to nominate a novel compendium of biomarkers specific for the proximal tubule, loop of Henle, and distal tubule (DT) (including P and intercalated cells), which can be used to perform nephronal mapping using RNA in situ hybridization and IHC technology. Employing this technique on NA we found enrichment of both the P-cell marker L1CAM and, the proximal tubule type-A and -B cell markers, PDZKI1P1 and PIGR, respectively. The cell-type markers for the intercalated cell of DTs (LINC01187 and FOXI1), and the loop of Henle (UMOD and IRX5), were found to be uniformly absent in NA. Overall, our findings show that based on cell type-specific implications of L1CAM expression, the shared expression pattern of L1CAM between DT P cells and NA. L1CAM expression will be of potential value in assisting surgical pathologists toward a diagnosis of NA in challenging patient samples.


Assuntos
Adenoma , Biomarcadores Tumorais , Molécula L1 de Adesão de Célula Nervosa , Humanos , Molécula L1 de Adesão de Célula Nervosa/análise , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula L1 de Adesão de Célula Nervosa/biossíntese , Adenoma/patologia , Adenoma/metabolismo , Masculino , Biomarcadores Tumorais/análise , Feminino , Idoso , Pessoa de Meia-Idade , Imuno-Histoquímica , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Néfrons/patologia , Néfrons/metabolismo , Adulto
3.
JCO Precis Oncol ; 8: e2300565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38810179

RESUMO

PURPOSE: Develop and validate gene expression-based biomarker associated with recurrent disease to facilitate risk stratification of clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS: We retrospectively identified 110 patients who underwent radical nephrectomy for ccRCC (discovery cohort). Patients who recurred were matched on the basis of grade/stage to patients without recurrence. Capture whole-transcriptome sequencing was performed on RNA isolated from archival tissue using the Illumina platform. We developed a gene-expression signature to predict recurrence-free survival/disease-free survival (DFS) using a 15-fold lasso and elastic-net regularized linear Cox model. We derived the 31-gene cell cycle progression (mxCCP) score using RNA-seq data for each patient. Kaplan-Meier (KM) curves and multivariable Cox proportional hazard testing were used to validate the independent prognostic impact of the gene-expression signature on DFS, disease-specific survival (DSS), and overall survival (OS) in two validation data sets (combined n = 761). RESULTS: After quality control, the discovery cohort comprised 50 patients with recurrence and 41 patients without, with a median follow-up of 26 and 36 months, respectively. We developed a 15-gene (15G) signature, which was independently associated with worse DFS and DSS (DFS: hazard ratio [HR], 11.08 [95% CI, 4.9 to 25.1]; DSS: HR, 9.67 [95% CI, 3.4 to 27.7]) in a multivariable model adjusting for clinicopathologic parameters (including stage, size, grade, and necrosis [SSIGN] score and Memorial Sloan Kettering Cancer Center nomogram) and mxCCP score. The 15G signature was also independently associated with worse DFS and DSS in both validation data sets (Validation A [n = 382], DFS: HR, 2.6 [95% CI, 1.6 to 4.3]; DSS: HR, 3 [95% CI, 1.4 to 6.1] and Validation B (n = 379), DFS: HR, 2.1 [95% CI, 1.2 to 3.6]; OS: HR, 3 [95% CI, 1.6 to 5.7]) adjusting for clinicopathologic variables and mxCCP score. CONCLUSION: We developed and validated a novel 15G prognostic signature to improve risk stratification of patients with ccRCC. Pending further validation, this signature has the potential to facilitate optimal treatment allocation.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/mortalidade , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Biomarcadores Tumorais/genética , Transcriptoma , Recidiva Local de Neoplasia/genética
4.
Med Oncol ; 41(3): 76, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393424

RESUMO

Alveolar soft-part sarcoma (ASPS) is a rare soft tissue tumor with a broad morphologic differential diagnosis. While histology and immunohistochemistry can be suggestive, diagnosis often requires exclusion of other entities followed by confirmatory molecular analysis for its characteristic ASPSCR1-TFE3 fusion. Current stain-based biomarkers (such as immunohistochemistry for cathepsin K and TFE3) show relatively high sensitivity but may lack specificity, often showing staining in multiple other entities under diagnostic consideration. Given the discovery of RNA in situ hybridization (RNA-ISH) for TRIM63 as a sensitive and specific marker of MiTF-family aberration renal cell carcinomas, we sought to evaluate its utility in the workup of ASPS. TRIM63 RNA-ISH demonstrated high levels (H-score greater than 200) of expression in 19/20 (95%) cases of ASPS (average H-score 330) and was weak or negative in cases of paraganglioma, clear cell sarcoma, rhabdomyosarcoma, malignant epithelioid hemangioendothelioma, as well as hepatocellular and adrenal cortical carcinomas. Staining was also identified in tumors with known subsets characterized by TFE3 alterations such as perivascular epithelioid cell neoplasm (PEComa, average H-score 228), while tumors known to exhibit overexpression of TFE3 protein without cytogenetic alterations, such as melanoma and granular cell tumor, generally showed less TRIM63 ISH staining (average H-scores 147 and 96, respectively). Quantitative assessment of TRIM63 staining by RNA-ISH is potentially a helpful biomarker for tumors with molecular TFE3 alterations such as ASPS.


Assuntos
Carcinoma de Células Renais , RNA , Sarcoma Alveolar de Partes Moles , Proteínas com Motivo Tripartido , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Hibridização In Situ , Proteínas Musculares/genética , Sarcoma Alveolar de Partes Moles/diagnóstico , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/patologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases
5.
Am J Surg Pathol ; 48(2): 163-173, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994665

RESUMO

Birt-Hogg-Dubé (BHD) syndrome is associated with an increased risk of multifocal renal tumors, including hybrid oncocytic tumor (HOT) and chromophobe renal cell carcinoma (chRCC). HOT exhibits heterogenous histologic features overlapping with chRCC and benign renal oncocytoma, posing challenges in diagnosis of HOT and renal tumor entities resembling HOT. In this study, we performed integrative analysis of bulk and single-cell RNA sequencing data from renal tumors and normal kidney tissues, and nominated candidate biomarkers of HOT, L1CAM, and LINC01187 , which are also lineage-specific markers labeling the principal cell and intercalated cell lineages of the distal nephron, respectively. Our findings indicate the principal cell lineage marker L1CAM and intercalated cell lineage marker LINC01187 to be expressed mutually exclusively in a unique checkered pattern in BHD-associated HOTs, and these 2 lineage markers collectively capture the 2 distinct tumor epithelial populations seen to co-exist morphologically in HOTs. We further confirmed that the unique checkered expression pattern of L1CAM and LINC01187 distinguished HOT from chRCC, renal oncocytoma, and other major and rare renal cell carcinoma subtypes. We also characterized the histopathologic features and immunophenotypic features of oncocytosis in the background kidney of patients with BHD, as well as the intertumor and intratumor heterogeneity seen within HOT. We suggest that L1CAM and LINC01187 can serve as stand-alone diagnostic markers or as a panel for the diagnosis of HOT. These lineage markers will inform future studies on the evolution and interaction between the 2 transcriptionally distinct tumor epithelial populations in such tumors.


Assuntos
Adenoma Oxífilo , Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renais , Neoplasias Renais , Molécula L1 de Adesão de Célula Nervosa , Humanos , Síndrome de Birt-Hogg-Dubé/genética , Cidades , Neoplasias Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia
6.
J Clin Pathol ; 77(2): 73-76, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38124011

RESUMO

The V-set and transmembrane domain containing 2A (VSTM2A) gene is located on chromosome 7. In the physiological state, VSTM2A regulates preadipocyte cell differentiation. VSTM2A is highly expressed in normal human brain tissue and minimally expressed in other normal tissues. Mucinous tubular and spindle cell carcinoma (MTSCC) of the kidney is a distinct renal tumour subtype with signature chromosomal copy number alterations and an indolent outcome in the majority of cases. VSTM2A overexpression is highly enriched in this renal cancer subtype and has been shown to have potential diagnostic value in distinguishing MTSCC from renal tumours with overlapping histological appearances.


Assuntos
Adenocarcinoma Mucinoso , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Neoplasias Renais/patologia , Carcinoma de Células Renais/patologia , Rim/patologia , Diferenciação Celular , Adenocarcinoma Mucinoso/patologia
8.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582357

RESUMO

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA
9.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582358

RESUMO

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Acetilação , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteômica/métodos
10.
Cancer Cell ; 41(9): 1586-1605.e15, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567170

RESUMO

We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of ß-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. Overall, this study identified molecular and imaging markers that can be further investigated to guide patient stratification for more precise treatment of EC.


Assuntos
Neoplasias do Endométrio , Metformina , Proteogenômica , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Estudos Prospectivos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Metformina/farmacologia
11.
Am J Clin Pathol ; 160(6): 549-554, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499055

RESUMO

OBJECTIVES: Fluorescence in situ hybridization (FISH) assays for the detection of chromosomal rearrangements involving TFE3 and TFEB are considered the gold standard for the diagnosis of MiTF family altered renal cell carcinoma (MiTF-RCC). We reviewed 801 clinical TFE3/TFEB FISH assays performed at our tertiary-level institution between 2014 and 2023 on kidney tumors suspicious at the morphologic or biomarker level for MiTF aberrations. METHODS: We summarized and analyzed clinical information, TFE3/TFEB FISH results, and available biomarker staining results in a cohort of 453 consecutive kidney tumor cases suspicious for MiTF-RCC. RESULTS: In total, 61 of 434 (14%) kidney tumors were confirmed for TFE3 translocation; 10 of 367 cases (2.7%) were confirmed for TFEB translocation. Since TFEB amplification interpretation was implemented in our service line, 20 of 306 cases (6.5%) were diagnosed with TFEB amplification. Importantly, TFE3 and TFEB rearrangements were never co-detected within the same kidney tumor. Patients with TFEB amplification were significantly older (P < .001) than patients with TFE3 or TFEB translocation. Kidney tumors with TFEB amplification were seen to be at least 3 times as common as those with TFEB translocation. CONCLUSIONS: Clinical TFE3/TFEB FISH assays successfully identified and confirmed rare MiTF-RCC with TFE3 and TFEB rearrangements. Although morphologic and biomarker features associated with a kidney tumor may be suggestive of MiTF-RCC, clinical TFE3/TFEB FISH assays are crucial for a confirmation and definitive subclassification of patients with MiTF-RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Hibridização in Situ Fluorescente/métodos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Translocação Genética , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética
12.
Hum Pathol ; 134: 102-113, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36581128

RESUMO

Fumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is an aggressive, rare genetic disease affecting the kidney and other organ systems. We constructed a specialized multi-institutional cohort of 20 primary FH-deficient RCC cases with aims of characterizing a new commercially available antibody, S-(2-succino)-cysteine (2SC). Herein, we present our findings on the biomarker characterization and performance of 2SC expression by immunohistochemistry (IHC) in FH-deficient RCC and other common and rare RCC subtypes. Morphological assessment revealed characteristic cytomorphologic features and a majority (55%) of FH-deficient RCC had mixed architectural growth patterns. We observed predominantly diffuse and strong cytoplasmic staining with limited nuclear positivity for 2SC staining on IHC. Receiver operating characteristic curves (ROC) for 2SC identified the threshold IHC score (cutoff) as 90, with the sensitivity and specificity being 100% and 91%, respectively. The findings of the present study along with the prior evidence in literature encourage utilization of 2SC as a positive marker along with the loss of FH expression by anti-FH IHC staining as a negative marker, in clinical and/or pathologic scenarios when considering FH-deficient RCC in the differential diagnosis. FH-/2SC+ may serve as a comprehensive IHC panel in identifying such cases and excluding morphologically similar entities.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Neoplasias Uterinas , Humanos , Feminino , Carcinoma de Células Renais/patologia , Cisteína , Fumarato Hidratase , Leiomiomatose/genética , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética , Neoplasias Uterinas/patologia
13.
Cancer Cell ; 41(1): 139-163.e17, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563681

RESUMO

Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Resultado do Tratamento , Prognóstico , Biomarcadores Tumorais/genética
14.
Int J Surg Pathol ; 31(6): 1027-1040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36250542

RESUMO

Introduction. Chromophobe renal cell carcinoma (chromophobe RCC) is the third major subcategory of renal tumors after clear cell RCC and papillary RCC, accounting for approximately 5% of all RCC subtypes. Other oncocytic neoplasms seen commonly in surgical pathology practice include the eosinophilic variant of chromophobe RCC, renal oncocytoma, and low-grade oncocytic unclassified RCC. Methods. In our recent next-generation sequencing based study, we nominated a lineage-specific novel biomarker LINC01187 (long intergenic non-protein coding RNA 1187) which was found to be enriched in chromophobe RCC. Like KIT (cluster of differentiation 117; CD117), a clinically utilized chromophobe RCC related biomarker, LINC01187 is expressed in intercalated cells of the nephron. In this follow-up study, we performed KIT immunohistochemistry and LINC01187 RNA in situ hybridization (RNA-ISH) on a cohort of chromophobe RCC and other renal neoplasms, characterized the expression patterns, and quantified the expression signals of the two biomarkers in both primary and metastatic settings. Results. LINC01187, in comparison to KIT, exhibits stronger and more uniform expression within tumors while maintaining temporal and spatial consistency. LINC01187 also is devoid of intra-tumoral heterogeneous expression pattern, a phenomenon commonly noted with KIT. Conclusions. LINC01187 expression can augment the currently utilized KIT assay and help facilitate easy microscopic analyses in routine surgical pathology practice.


Assuntos
Adenoma Oxífilo , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Seguimentos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Adenoma Oxífilo/diagnóstico , Adenoma Oxífilo/patologia , Biomarcadores Tumorais/metabolismo , RNA , Diagnóstico Diferencial
15.
Hum Pathol ; 130: 95-109, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36511267

RESUMO

Clear cell renal cell carcinoma (CCRCC) is a common renal malignancy known for its lethality and chromosome 3p aberrancies associated with loss of VHL. It has been shown that additional prognostic molecular markers exist in other transcriptional modifiers such as BAP1 and SETD2. Molecular heterogeneity has been described between primary and metastatic sites as well as genetic diversity in spatial tumor analysis; however, morphologic and proteogenomic heterogeneity information is lacking. We assessed 77 nephrectomy specimens with a diagnosis of CCRCC for morphologic architectural patterns including nodular growth patterns and variations in WHO/ISUP grade. Evaluation of highly heterogeneous areas with immunohistochemical (IHC) staining for BAP1, UCHL1, SETD2, and CAIX was performed and correlated with morphologic and histology data. Ultimately, high variability in the morphologic and histological findings matched the complexity of the IHC findings. Alterations in expression of CAIX and UCHL1 correlated with alterations in transcriptional regulators BAP1 and SETD2 within the tumor. High-grade morphology, such as eosinophilia, were areas enriched for alteration of biomarker expression. This highly complex data set of morphologic and biomarker characteristics highlights the heterogeneity of morphology amongst high-grade CCRCC tumors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/metabolismo , Proteínas Supressoras de Tumor/genética , Mutação , Neoplasias Renais/patologia , Prognóstico
16.
BMC Cancer ; 22(1): 494, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513774

RESUMO

BACKGROUND: TMPRSS2-ERG gene rearrangement, the most common E26 transformation specific (ETS) gene fusion within prostate cancer, is known to contribute to the pathogenesis of this disease and carries diagnostic annotations for prostate cancer patients clinically. The ERG rearrangement status in prostatic adenocarcinoma currently cannot be reliably identified from histologic features on H&E-stained slides alone and hence requires ancillary studies such as immunohistochemistry (IHC), fluorescent in situ hybridization (FISH) or next generation sequencing (NGS) for identification. METHODS: OBJECTIVE: We accordingly sought to develop a deep learning-based algorithm to identify ERG rearrangement status in prostatic adenocarcinoma based on digitized slides of H&E morphology alone. DESIGN: Setting, and Participants: Whole slide images from 392 in-house and TCGA cases were employed and annotated using QuPath. Image patches of 224 × 224 pixel were exported at 10 ×, 20 ×, and 40 × for input into a deep learning model based on MobileNetV2 convolutional neural network architecture pre-trained on ImageNet. A separate model was trained for each magnification. Training and test datasets consisted of 261 cases and 131 cases, respectively. The output of the model included a prediction of ERG-positive (ERG rearranged) or ERG-negative (ERG not rearranged) status for each input patch. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Various accuracy measurements including area under the curve (AUC) of the receiver operating characteristic (ROC) curves were used to evaluate the deep learning model. RESULTS AND LIMITATIONS: All models showed similar ROC curves with AUC results ranging between 0.82 and 0.85. The sensitivity and specificity of these models were 75.0% and 83.1% (20 × model), respectively. CONCLUSIONS: A deep learning-based model can successfully predict ERG rearrangement status in the majority of prostatic adenocarcinomas utilizing only H&E-stained digital slides. Such an artificial intelligence-based model can eliminate the need for using extra tumor tissue to perform ancillary studies in order to assess for ERG gene rearrangement in prostatic adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Inteligência Artificial , Fusão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/patologia , Regulador Transcricional ERG/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-35483881

RESUMO

Metastatic renal cell carcinoma (RCC) remains an incurable malignancy, despite recent advances in systemic therapies. Genetic syndromes associated with kidney cancer account for only 5%-8% of all diagnosed kidney malignancies, and genetic predispositions to kidney cancer predisposition are still being studied. Genomic testing for kidney cancer is useful for disease molecular subtyping but provides minimal therapeutic information. Understanding how aberrations drive RCC development and how their contextual influences, such as chromosome loss, genome instability, and DNA methylation changes, may alter therapeutic response is of importance. We report the case of a 36-yr-old female with aggressive, metastatic RCC and a significant family history of cancer, including RCC. This patient harbors a novel, pathogenic, germline ATM mutation along with a rare germline variant of unknown significance in the BAP1 gene. In addition, somatic loss of heterozygosity (LOH) in BAP1 and ATM genes, somatic mutation and LOH in the VHL gene, copy losses in Chromosomes 9p and 14, and genome instability are also noted in the tumor, potentially dictating this patient's aggressive clinical course. Further investigation is warranted to evaluate the association of ATM and BAP1 germline mutations with increased risk of RCC and if these mutations should lead to enhanced and early screening.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Feminino , Instabilidade Genômica , Mutação em Linhagem Germinativa/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
18.
J Invest Dermatol ; 142(3 Pt A): 641-652, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34474081

RESUMO

Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma that is classified as Merkel cell polyomavirus-positive (virus positive [VP]) or Merkel cell polyomavirus-negative (virus negative [VN]). Epigenetic changes, such as DNA methylation, can alter gene expression and influence cancer progression. However, patterns of DNA methylation and the therapeutic efficacy of hypomethylating agents have not been fully explored in MCC. We characterized genome-wide DNA methylation in 16 MCC cell lines from both molecular subclasses in comparison with other cancer types and found that the overall profile of MCC is similar to that of small-cell lung carcinoma. Comparison of VP MCC with VN MCC revealed 2,260 differentially methylated positions. The hypomethylating agent decitabine upregulated the expression of antigen-presenting machinery in MCC cell lines and stimulated membrane expression of HLA-A in VP and VN MCC xenograft tumors. Decitabine also induced prominent caspase- and large T antigen‒independent cell death in VP MCC, whereas VN MCC cell lines displayed decreased proliferation without increased cell death. In mouse xenografts, decitabine significantly decreased the size of VP tumors but not that of VN tumors. Our findings indicate that viral status predicts genomic methylation patterns in MCC and that decitabine may be therapeutically effective against MCC through antiproliferative effects, cell death, and increased immune recognition.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Animais , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/patologia , Metilação de DNA , Decitabina/farmacologia , Decitabina/uso terapêutico , Humanos , Poliomavírus das Células de Merkel/genética , Camundongos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Infecções Tumorais por Vírus/genética
19.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099557

RESUMO

Diverse subtypes of renal cell carcinomas (RCCs) display a wide spectrum of histomorphologies, proteogenomic alterations, immune cell infiltration patterns, and clinical behavior. Delineating the cells of origin for different RCC subtypes will provide mechanistic insights into their diverse pathobiology. Here, we employed single-cell RNA sequencing (scRNA-seq) to develop benign and malignant renal cell atlases. Using a random forest model trained on this cell atlas, we predicted the putative cell of origin for more than 10 RCC subtypes. scRNA-seq also revealed several attributes of the tumor microenvironment in the most common subtype of kidney cancer, clear cell RCC (ccRCC). We elucidated an active role for tumor epithelia in promoting immune cell infiltration, potentially explaining why ccRCC responds to immune checkpoint inhibitors, despite having a low neoantigen burden. In addition, we characterized an association between high endothelial cell types and lack of response to immunotherapy in ccRCC. Taken together, these single-cell analyses of benign kidney and RCC provide insight into the putative cell of origin for RCC subtypes and highlight the important role of the tumor microenvironment in influencing ccRCC biology and response to therapy.


Assuntos
Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Análise de Célula Única , Carcinoma de Células Renais/imunologia , Sobrevivência Celular , Células Endoteliais/patologia , Células Epiteliais/patologia , Humanos , Imunoterapia , Rim/patologia , Neoplasias Renais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/patologia , Resultado do Tratamento
20.
Mod Pathol ; 34(8): 1596-1607, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33854184

RESUMO

Microphthalmia-associated transcription factor (MiT) family aberration-associated renal cell carcinoma (MiTF-RCC) is a subtype of renal cell carcinoma harboring recurrent chromosomal rearrangements involving TFE3 or TFEB genes. MiTF-RCC is morphologically diverse, can histologically resemble common RCC subtypes like clear cell RCC and papillary RCC, and often poses a diagnostic challenge in genitourinary clinical and pathology practice. To characterize the MiTF-RCC at the molecular level and identify biomarker signatures associated with MiTF-RCC, we analyzed RNAseq data from MiTF-RCC, other RCC subtypes and benign kidney. Upon identifying TRIM63 as a cancer-specific biomarker in MiTF-RCC, we evaluated its expression independently by RNA in situ hybridization (RNA-ISH) in whole tissue sections from 177 RCC cases. We specifically included 31 cytogenetically confirmed MiTF-RCC cases and 70 RCC cases suspicious for MiTF-RCC in terms of clinical and morphological features, to evaluate and compare TRIM63 RNA-ISH results with the results from TFE3/TFEB fluorescence in situ hybridization (FISH), which is the current clinical standard. We confirmed that TRIM63 mRNA was highly expressed in all classes of MiTF-RCC compared to other renal tumor categories, where it was mostly absent to low. While the TRIM63 RNA-ISH and TFE3/TFEB FISH results were largely concordant, importantly, TRIM63 RNA-ISH was strongly positive in TFE3 FISH false-negative cases with RBM10-TFE3 inversion. In conclusion, TRIM63 can serve as a diagnostic marker to distinguish MiTF-RCC from other renal tumor subtypes with overlapping morphology. We suggest a combination of TFE3/TFEB FISH and TRIM63 RNA-ISH assays to improve the accuracy and efficiency of MiTF-RCC diagnosis. Accurate diagnosis of MiTF-RCC and other RCC subtypes would enable effective targeted therapy and avoid poor therapeutic response due to tumor misclassification.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/diagnóstico , Proteínas Musculares/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fator de Transcrição Associado à Microftalmia/genética , Proteínas Musculares/análise , Fusão Oncogênica , Sensibilidade e Especificidade , Translocação Genética , Proteínas com Motivo Tripartido/análise , Ubiquitina-Proteína Ligases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA