Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1349573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835865

RESUMO

Seed coating ensures the targeted delivery of various compounds from the early stages of development to increase crop quality and yield. Silicon and alginate are known to have plant biostimulant effects. Rice husk (RH) is a significant source of biosilica. In this study, we coated mung bean seeds with an alginate-glycerol-sorbitol (AGS) film with embedded biogenic nanosilica (SiNPs) from RH, with significant plant biostimulant activity. After dilute acid hydrolysis of ground RH in a temperature-controlled hermetic reactor, the resulting RH substrate was neutralized and calcined at 650°C. The structural and compositional characteristics of the native RH, the intermediate substrate, and SiNPs, as well as the release of soluble Si from SiNPs, were investigated. The film for seed coating was optimized using a mixture design with three factors. The physiological properties were assessed in the absence and the presence of 50 mM salt added from the beginning. The main parameters investigated were the growth, development, metabolic activity, reactive oxygen species (ROS) metabolism, and the Si content of seedlings. The results evidenced a homogeneous AGS film formation embedding 50-nm amorphous SiNPs having Si-O-Si and Si-OH bonds, 0.347 cm3/g CPV (cumulative pore volume), and 240 m2/g SSA (specific surface area). The coating film has remarkable properties of enhancing the metabolic, proton pump activities and ROS scavenging of mung seedlings under salt stress. The study shows that the RH biogenic SiNPs can be efficiently applied, together with the optimized, beneficial alginate-based film, as plant biostimulants that alleviate saline stress from the first stages of plant development.

2.
Crit Rev Food Sci Nutr ; : 1-39, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096550

RESUMO

Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.

3.
Crit Rev Food Sci Nutr ; 61(18): 3031-3065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32691612

RESUMO

Nanofoods is a current concept that is based on the application of nanotechnologies in the preparation of safe foods, with superior nutritional and sensory characteristics, and capable of providing multiple health benefits. In line with the principles of this concept, food scientists have focused on developing new types of nano biosystems that can contribute to increasing the bioavailability of bioactive compounds used in food fortification. Numerous research teams have investigated the main factors limiting oral bioavailability including: bioaccessibility, absorption and transformation of bioactive compounds and bioactive-loaded nanocarriers. The physicochemical processes involved in the factors limiting oral bioavailability have been extensively studied, such asthe release, solubility and interaction of bioactive compounds and nanocarriers during food digestion, transport mechanisms of bioactive compounds and nanoparticles through intestinal epithelial cells as well as the chemical and biochemical transformations in phase I and phase II reactions. In this comprehensive review, the physicochemical processes involved in the bioaccessibility/bioavailability of different encapsulated bioactive compounds, that play an important role in human health, will be explained including polyphenols, phytosterols, carotenoids, vitamins and minerals. In particular, the mechanisms involved in the cellular uptake of bioactive-loaded nanocarriers including transcellular transport (diffusion, endocytosis, pinocytosis, transcytosis, phagocytosis), paracellular transport (through the "tight junctions" between epithelial cells), and the active transport of bioactive compounds under the action of membrane transporters are highlighted.


Assuntos
Suplementos Nutricionais , Nanopartículas , Disponibilidade Biológica , Carotenoides , Humanos , Nanotecnologia
4.
Compr Rev Food Sci Food Saf ; 19(3): 954-994, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-33331687

RESUMO

Nowadays, many consumers prefer foods with a high content of nutraceuticals that contribute to the prevention or healing of chronic diseases. Therefore, in recent years, more and more researchers have studied the bioefficiency, safety, and toxicity of nutraceutical-enriched foods. The key stage of nutraceutical bioefficiency is oral bioavailability, which involves the following processes: the release of nutraceuticals from food matrices or nanocarriers in gastrointestinal fluids, the solubilization of nutraceuticals and their interaction with other components of gastrointestinal fluids, the absorption of nutraceuticals by the epithelial layer, and the chemical and biochemical transformations into epithelial cells. These processes are endogenous factors that greatly influence the bioavailability of nutraceuticals. In addition to endogenous factors, the bioavailability of nutraceuticals is also affected by exogenous factors, such as: physicochemical properties of nutraceuticals, food matrix, food processing and storage, and so forth. Both the endogenous and exogenous factors are comprehensively analyzed in this review. Thus, the physicochemical and enzymatic processes involved in food digestion are described, highlighting the role of each stage of gastrointestinal tract (mouth, stomach, and intestine) in nutraceuticals bioaccessibility. The structure and functions of the mucus and epithelial layers, the mechanisms involved in the active and passive transport of nutraceuticals through the cell membrane, and phase I and phase II metabolism reactions are also discussed. Finally, this review focuses on several types of bioactive-loaded nanocarriers such as lipid-based, surfactant-based, and biopolymeric nanocarriers that improve the bioavailability of nutraceuticals.


Assuntos
Disponibilidade Biológica , Suplementos Nutricionais , Trato Gastrointestinal/metabolismo , Animais , Digestão/fisiologia , Manipulação de Alimentos/métodos , Alimento Funcional , Trato Gastrointestinal/fisiologia , Humanos , Nanopartículas
5.
Compr Rev Food Sci Food Saf ; 19(6): 2862-2884, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337033

RESUMO

Oral bioavailability is the key to the bioefficiency of food bioactive ingredients; it evaluates the relationship between foods and their health benefits. The analysis of the main factors limiting the oral bioavailability (bioaccessibility, absorption, and transformation) has led to the proposal of classification systems for pharmaceuticals and nutraceuticals (Biopharmaceuticals Classification System and Nutraceutical Bioavailability Classification Scheme). Based on the relevant studies published in the last decade, this review presents the essential aspects regarding the factors limiting the oral bioavailability of the biocomponents and different in vitro methods used to investigate the mechanisms involved in the digestion, absorption, and metabolism of biocomponents, particularly encapsulated bioactive compounds. Oral bioavailability investigated by in vitro studies provides the food and drug manufacturers with information to formulate delivery systems more efficiently and to determine the dosage of biocomponents for increase the health benefits and avoid or reduce the risk of toxicity.


Assuntos
Disponibilidade Biológica , Técnicas In Vitro , Nutrientes , Administração Oral , Animais , Suplementos Nutricionais , Digestão/fisiologia , Ingredientes de Alimentos , Humanos
6.
Food Chem ; 303: 125416, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472385

RESUMO

Calcium and vitamin D3 were co-encapsulated in three types of water-in-oil-in-water (W/O/W) double emulsions stabilized with biopolymers: gum arabic, sodium alginate (Alg) and chitosan (Ch). Three calcium salts with different solubility were used: calcium carbonate (CaC), tricalcium phosphate (CaP) and calcium gluconate (CaG). In order to study the bioavailability of calcium and vitamin D3, the W/O/W double emulsions were subjected to digestion in simulated conditions using in vitro gastrointestinal models. The size of the oil droplets of all double emulsions increased in oral phase and decreased in gastric and intestinal phases. In the intestinal phase, the average diameter of oil globules in the W/O/W(Alg) and W/O/W(Ch) was d23 = 6.56 ±â€¯0.09 and d23 = 5.33 ±â€¯0.01 and the electro-kinetic potential was: ζ ≈ -25 mV and ζ ≈ -17 mV, respectively. Presence of calcium ions in the intestinal fluid decreased the free fatty acids content and decreased the bioaccessibility of vitamin D3 due to the inhibition of micellization process.


Assuntos
Cálcio/química , Colecalciferol/química , Disponibilidade Biológica , Cálcio/metabolismo , Colecalciferol/metabolismo , Digestão , Composição de Medicamentos , Emulsões/química , Trato Gastrointestinal/metabolismo , Humanos , Cinética , Modelos Biológicos , Solubilidade , Água/química
7.
J Microencapsul ; 35(6): 584-599, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30557070

RESUMO

Chlorogenic acid (CA) is a natural compound used as an antioxidant in the preparation of food, drugs, and cosmetics. Due to their low stability and bioavailability, many researchers have studied the encapsulation of CA in various delivery colloidal systems. The aim of this study was to evaluate the stability of water-in-oil-in-water (W/O/W) double emulsions loaded with CA and its antioxidant capacity. For this purpose, CA-W/O/W double emulsions were prepared using Span 80 and lecithin as lipophilic emulsifiers, and Tween 20 as a hydrophilic emulsifier. The influence of nature of lipophilic emulsifiers, the presence of chitosan (CH) in the internal and external aqueous phases, pH, temperature and the storage time of W/O/W double emulsions were also investigated. Depending on the preparation conditions, the W/O/W double emulsions showed the droplet size in the range 9.13 ± 0.55 µm-38.21 ± 1.87 µm, the creaming index 34%-78% and the efficiency encapsulation 79.45 ± 1.5%-88.13 ± 1.9%. Zeta potential values were negative for the W/O/W double emulsion without CH (-36.8 ± 2.02mV; -27.3 ± 1.75mV) and positive for the W/O/W double emulsions with CH in the external aqueous phase (+6.5 ± 0.42mV; 28.6 ± 0.92mV). The study of the release of CA from W/O/W double emulsions has highlighted two mechanisms: one based on the coalescence between the water inner droplets or between the oil globules as well as a diffusion releasing mechanism. The oxidative stability parameters of the W/O/W double emulsions, such as the peroxide value (POV) and the conjugated diene content (CD) were measured.


Assuntos
Antioxidantes/química , Ácido Clorogênico/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Disponibilidade Biológica , Compostos de Bifenilo/química , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/farmacologia , Estabilidade de Medicamentos , Emulsificantes , Emulsões , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Hexoses , Lecitinas/química , Óleos , Oxirredução , Tamanho da Partícula , Picratos/química , Polissorbatos , Água
8.
J Environ Manage ; 203(Pt 2): 811-816, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474707

RESUMO

The paper presents a set of three interconnected case studies on the depuration of food processing wastewaters by using aeration & ozonation and two types of hollow-fiber membrane bioreactor (MBR) approaches. A secondary and more extensive objective derived from the first one is to draw a clearer, broader frame on the variation of physical-chemical parameters during the purification of wastewaters from food industry through different operating modes with the aim of improving the management of water purification process. Chemical oxygen demand (COD), pH, mixed liquor suspended solids (MLSS), total nitrogen, specific nitrogen (NH4+, NO2-, NO3-) total phosphorous, and total surfactants were the measured parameters, and their influence was discussed in order to establish the best operating mode to achieve the purification performances. The integrated air-ozone aeration process applied in the second operating mode lead to a COD decrease by up to 90%, compared to only 75% obtained in a conventional biological activated sludge process. The combined purification process of MBR and ozonation produced an additional COD decrease of 10-15%, and made the Total Surfactants values to comply to the specific legislation.


Assuntos
Reatores Biológicos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Indústria Alimentícia , Esgotos , Eliminação de Resíduos Líquidos , Purificação da Água
9.
Polymers (Basel) ; 9(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30971046

RESUMO

We focused on preparing cellulose nanofibrils by purification, separation, and mechanical treatment of Kombucha membranes (KM) resulted as secondary product from beverage production by fermentation of tea broth with symbiotic culture of bacteria and yeast (SCOBY). We purified KM using two alkaline solutions, 1 and 4 M NaOH, which afterwards were subjected to various mechanical treatments. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed to evaluate the purification degree, the size and aspect of cellulose fibrils after each treatment step, the physical-chemical properties of intermediary and final product, and for comparison with micro-crystalline cellulose from wooden sources. We determined that 1 M NaOH solution leads to approx. 85% purification, while a higher concentration assures almost 97% impurities removal. XRD analysis evidenced an increase in crystallinity from 37% to 87% after purification, the characteristic diffractograms of Iα and Iß cellulose allomorphs, and a further decrease in crystallinity to 46% after microfluidization, fact correlated with a drastically decrease in fibrils' size. FTIR analysis evidenced the appearance of new chain ends by specific transmission bands at 2941 and 2843cm-1.

10.
Chem Rev ; 116(19): 11500-11528, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27610706

RESUMO

More than 80 years ago, artificial materials with molecular recognition sites emerged. The application of molecular imprinting to membrane separation has been studied since 1962. Especially after 1990, such research has been intensively conducted by membranologists and molecular imprinters to understand the advantages of each technique with the aim of constructing an ideal membrane, which is still an active area of research. The present review aims to be a substantial, comprehensive, authoritative, critical, and general-interest review, placed at the cross section of two broad, interconnected, practical, and extremely dynamic fields, namely, the fields of membrane separation and molecularly imprinted polymers. This review describes the recent discoveries that appeared after repeated and fertile collisions between these two fields in the past three years, to which are added the worthy acknowledgments of pioneering discoveries and a look into the future of molecularly imprinted membranes. The review begins with a general introduction in membrane separation, followed by a short theoretical section regarding the basic principles of mass transport through a membrane. Following these general aspects on membrane separation, two principles of obtaining polymeric materials with molecular recognition properties are reviewed, namely, molecular imprinting and alternative molecular imprinting, followed the methods of obtaining and practical applications for the particular case of molecularly imprinted membranes. The review continues with insights into molecularly imprinted nanofiber membranes as a promising, highly optimized type of membrane that could provide a relatively high throughput without a simultaneous unwanted reduction in permselectivity. Finally, potential applications of molecularly imprinted membranes in a variety of fields are highlighted, and a look into the future of membrane separations is offered.

11.
Food Chem ; 195: 39-48, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26575710

RESUMO

The encapsulation by spray drying method of coriander essential oil (CEO) in various materials (chitosan, alginate, chitosan/alginate, chitosan/inulin) was studied. The viscoelastic properties of the oil-in-water (O/W) emulsions and the characteristics of CEO-loaded microcapsules like morphology, moisture, wettability, solubility, flowability properties, swelling and release mechanisms were investigated. The chitosan microcapsules had a brain-like structure while the alginate and chitosan/alginate microcapsules are spherical with a smooth surface. The Compressibility Index (CI=29.09-32.25%) and Hausner Ratio (HR=1.38-1.44) values showed that all the microcapsules prepared correspond to the "poor" flowability powders group. The chitosan microcapsules exhibited the maximum release rate at pH 2.5 while the alginate microcapsules exhibited the maximum release rate at pH 6.5. Kinetics and mechanism of CEO release were studied using various mathematical models such as, zero order, first order, Higuchi model and Peppas model. The diffusional exponent (n) values of Peppas equation explains a non Fickian transport mechanism and diffusion or diffusion-swelling controlled process.


Assuntos
Alginatos/química , Coriandrum/química , Inulina/química , Óleos Voláteis/química , Cápsulas/química , Quitosana/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Solubilidade
12.
Biosensors (Basel) ; 5(2): 276-87, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26018780

RESUMO

The colonization of Escherichia coli (E. coli) to host cell surfaces is known to be a glycan-specific process that can be modulated by shear stress. In this work we investigate whether flow rate changes in microchannels integrated on surface plasmon resonance (SPR) surfaces would allow for investigating such processes in an easy and high-throughput manner. We demonstrate that adhesion of uropathogenic E. coli UTI89 on heptyl α-d-mannopyranoside-modified gold SPR substrates is minimal under almost static conditions (flow rates of 10 µL·min⁻¹), and reaches a maximum at flow rates of 30 µL·min⁻¹ (≈30 mPa). This concept is applicable to the investigation of any ligand-pathogen interactions, offering a robust, easy, and fast method for screening adhesion characteristics of pathogens to ligand-modified interfaces.


Assuntos
Aderência Bacteriana , Escherichia coli/fisiologia , Ressonância de Plasmônio de Superfície/métodos , Fenômenos Biomecânicos , Técnicas Biossensoriais/métodos , Ouro/química , Manose/química
13.
J Microencapsul ; 31(1): 93-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23862727

RESUMO

The objective of the investigations was the optimisation of the parameters for cold-adapted Streptomyces MIUG 4 Alga strain cells immobilisation using emulsification-internal gelation technique in calcium alginate microspheres and testing their ability to produce cold-active ß-amylase. By Box-Behnken design and response surface methodology, the effects of independent variables were established, which included sodium alginate concentration (A), sodium alginate:living cell ratio (B) and the Span 80 concentration (C) upon microspheres formation and their functionality. Mean diameter of formed microspheres with immobilised biomass and cold-active ß-amylase production were chosen as dependent variables in order to increase the yield of starch hydrolysis. Diameters of microspheres <25.5 µm provided large yield of cold-active ß-amylase comparing with microspheres with bigger diameter. A 1.5-fold increase in the substrate hydrolysis yield was achieved using the immobilised biocatalyst compared with the crude enzyme extract, after 96 h of substrate bioconversion.


Assuntos
Alginatos/química , Proteínas de Bactérias/química , Biocatálise , Streptomyces/enzimologia , beta-Amilase/química , Proteínas de Bactérias/biossíntese , Células Imobilizadas , Ácido Glucurônico/química , Ácidos Hexurônicos/química , beta-Amilase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA