Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Adv Sci (Weinh) ; 10(26): e2302611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400371

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare disease involving cystic lung destruction by invasive LAM cells. These cells harbor loss-of-function mutations in TSC2, conferring hyperactive mTORC1 signaling. Here, tissue engineering tools are employed to model LAM and identify new therapeutic candidates. Biomimetic hydrogel culture of LAM cells is found to recapitulate the molecular and phenotypic characteristics of human disease more faithfully than culture on plastic. A 3D drug screen is conducted, identifying histone deacetylase (HDAC) inhibitors as anti-invasive agents that are also selectively cytotoxic toward TSC2-/- cells. The anti-invasive effects of HDAC inhibitors are independent of genotype, while selective cell death is mTORC1-dependent and mediated by apoptosis. Genotype-selective cytotoxicity is seen exclusively in hydrogel culture due to potentiated differential mTORC1 signaling, a feature that is abrogated in cell culture on plastic. Importantly, HDAC inhibitors block invasion and selectively eradicate LAM cells in vivo in zebrafish xenografts. These findings demonstrate that tissue-engineered disease modeling exposes a physiologically relevant therapeutic vulnerability that would be otherwise missed by conventional culture on plastic. This work substantiates HDAC inhibitors as possible therapeutic candidates for the treatment of patients with LAM and requires further study.


Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Animais , Humanos , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Engenharia Tecidual , Peixe-Zebra , Alvo Mecanístico do Complexo 1 de Rapamicina
2.
Stem Cell Reports ; 13(6): 1111-1125, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31813826

RESUMO

Human pluripotent stem cells (hPSCs) are an essential cell source in tissue engineering, studies of development, and disease modeling. Efficient, broadly amenable protocols for rapid lineage induction of hPSCs are of great interest in the stem cell biology field. We describe a simple, robust method for differentiation of hPSCs into mesendoderm in defined conditions utilizing single-cell seeding (SCS) and BMP4 and Activin A (BA) treatment. BA treatment was readily incorporated into existing protocols for chondrogenic and endothelial progenitor cell differentiation, while fine-tuning of BA conditions facilitated definitive endoderm commitment. After prolonged differentiation in vitro or in vivo, BA pretreatment resulted in higher mesoderm and endoderm levels at the expense of ectoderm formation. These data demonstrate that SCS with BA treatment is a powerful method for induction of mesendoderm that can be adapted for use in mesoderm and endoderm differentiation.


Assuntos
Diferenciação Celular/genética , Mesoderma/citologia , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica , Ativinas/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Endoderma/citologia , Endoderma/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes/efeitos dos fármacos , Análise de Célula Única , Teratoma/etiologia , Fatores de Tempo , Transcriptoma
3.
J Med Econ ; : 1-15, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30461330

RESUMO

OBJECTIVE: To assess the cost-effectiveness (CE) of the originator follitropin-α (Gonal-F) in patients undergoing a medically assisted reproduction (MAR) program in comparison to its biosimilars Bemfola and Ovaleap in a French context. METHODS: A CE model was developed for France with a National Health Service (NHS) perspective. Clinical, safety, and dosage data were derived from pivotal clinical trials that compared Gonal-F to Ovaleap and Bemfola. Costs pertaining to drugs, hospitalizations, specialist visits, and examinations were retrieved from the French Programme de Médicalisation des Systèmes d'Information (PMSI) hospital database, literature review, and French clinical experts using 2017 Euro tariffs. In order to test the robustness of results, deterministic one-way sensitivity analyses were carried out on the main variables to assess the impact of treatment cost, probability of birth, ovarian hyperstimulation syndrome (OHSS) rates, and dosage. RESULTS: The average incremental cost per live birth with OHSS and without OHSS was €259.56 and €278.39, respectively for Gonal-F compared to the pooled biosimilars (i.e., Ovaleap and Bemfola). GONAL-F had an incremental efficacy of 0.06 over the pooled biosimilars. The incremental cost-effectiveness ratio for Gonal-F with OHSS ranged from €3,274.80 to €4,877.76 compared to the pooled biosimilars, owing to the additional live births reported with Gonal-F. Sensitivity analyses also supported results from the base case analyses, with Gonal-F being cost-effective or the dominant strategy in most cases. CONCLUSION: Gonal-F seems to be a cost-effective strategy compared to its biosimilars Ovaleap and Bemfola, irrespective of the incidence of OHSS events, but further data are needed to confirm these results.

4.
Stem Cells Dev ; 27(16): 1085-1096, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29893190

RESUMO

While transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs) shows therapeutic potential in animal stroke models, major concerns for translating hiPSC therapy to the clinic are efficacy and safety. Therefore, there is a demand to develop an optimal strategy to enhance the engraftment and regenerative capacity of transplanted hiPSC-NSCs to produce fully differentiated neural cells to replace lost brain tissues. Metformin, an FDA-approved drug, is an optimal neuroregenerative agent that not only promotes NSC proliferation but also drives NSCs toward differentiation. In this regard, we hypothesize that preconditioning of hiPSC-NSCs with metformin before transplantation into the stroke-damaged brain will improve engraftment and regenerative capabilities of hiPSC-NSCs, ultimately enhancing functional recovery. In this study, we show that pretreatment of hiPSC-NSCs with metformin enhances the proliferation and differentiation of hiPSC-NSCs in culture. Furthermore, metformin-preconditioned hiPSC-NSCs show increased engraftment 1 week post-transplantation in a rat endothelin-1 focal ischemic stroke model. In addition, metformin-preconditioned cell grafts exhibit increased survival compared to naive cell grafts at 7 weeks post-transplantation. Analysis of the grafts demonstrates that metformin preconditioning enhances the differentiation of hiPSC-NSCs at the expense of their proliferation. As an outcome, rats receiving metformin-preconditioned cells display accelerated gross motor recovery and reduced infarct volume. These studies represent a vital step forward in the optimization of hiPSC-NSC-based transplantation to promote post-stroke recovery.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Metformina/administração & dosagem , Células-Tronco Neurais/transplante , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/patologia , Reabilitação do Acidente Vascular Cerebral
5.
PLoS Genet ; 14(3): e1007029, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29561844

RESUMO

Anaphase onset is an irreversible cell cycle transition that is triggered by the activation of the protease Separase. Separase cleaves the Mcd1 (also known as Scc1) subunit of Cohesin, a complex of proteins that physically links sister chromatids, triggering sister chromatid separation. Separase is regulated by the degradation of the anaphase inhibitor Securin which liberates Separase from inhibitory Securin/Separase complexes. In many organisms, Securin is not essential suggesting that Separase is regulated by additional mechanisms. In this work, we show that in budding yeast Cdk1 activates Separase (Esp1 in yeast) through phosphorylation to trigger anaphase onset. Esp1 activation is opposed by protein phosphatase 2A associated with its regulatory subunit Cdc55 (PP2ACdc55) and the spindle protein Slk19. Premature anaphase spindle elongation occurs when Securin (Pds1 in yeast) is inducibly degraded in cells that also contain phospho-mimetic mutations in ESP1, or deletion of CDC55 or SLK19. This striking phenotype is accompanied by advanced degradation of Mcd1, disruption of pericentric Cohesin organization and chromosome mis-segregation. Our findings suggest that PP2ACdc55 and Slk19 function redundantly with Pds1 to inhibit Esp1 within pericentric chromatin, and both Pds1 degradation and Cdk1-dependent phosphorylation of Esp1 act together to trigger anaphase onset.


Assuntos
Anáfase/fisiologia , Proteína Quinase CDC2/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Separase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Mutação , Fosforilação , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Securina/genética , Securina/metabolismo , Separase/genética , Fuso Acromático/genética , Coesinas
6.
Cancer Res ; 77(20): 5491-5502, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830860

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive destructive neoplasm of the lung associated with inactivating mutations in the TSC1 or TSC2 tumor suppressor genes. Cell or animal models that accurately reflect the pathology of LAM have been challenging to develop. Here, we generated a robust human cell model of LAM by reprogramming TSC2 mutation-bearing fibroblasts from a patient with both tuberous sclerosis complex (TSC) and LAM (TSC-LAM) into induced pluripotent stem cells (iPSC), followed by selection of cells that resemble those found in LAM tumors by unbiased in vivo differentiation. We established expandable cell lines under smooth muscle cell (SMC) growth conditions that retained a patient-specific genomic TSC2+/- mutation and recapitulated the molecular and functional characteristics of pulmonary LAM cells. These include multiple indicators of hyperactive mTORC1 signaling, presence of specific neural crest and SMC markers, expression of VEGF-D and female sex hormone receptors, reduced autophagy, and metabolic reprogramming. Intriguingly, the LAM-like features of these cells suggest that haploinsufficiency at the TSC2 locus contributes to LAM pathology, and demonstrated that iPSC reprogramming and SMC lineage differentiation of somatic patient cells with germline mutations was a viable approach to generate LAM-like cells. The patient-derived SMC lines we have developed thus represent a novel cellular model of LAM that can advance our understanding of disease pathogenesis and develop therapeutic strategies against LAM. Cancer Res; 77(20); 5491-502. ©2017 AACR.


Assuntos
Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Miócitos de Músculo Liso/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Proliferação de Células/fisiologia , Feminino , Haploinsuficiência , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
7.
Aging Cell ; 16(4): 870-887, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28597562

RESUMO

Ideally, disease modeling using patient-derived induced pluripotent stem cells (iPSCs) enables analysis of disease initiation and progression. This requires any pathological features of the patient cells used for reprogramming to be eliminated during iPSC generation. Hutchinson-Gilford progeria syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina. Cellular hallmarks of HGPS include nuclear blebbing, loss of peripheral heterochromatin, defective epigenetic inheritance, altered gene expression, and senescence. To model HGPS using iPSCs, detailed genome-wide and structural analysis of the epigenetic landscape is required to assess the initiation and progression of the disease. We generated a library of iPSC lines from fibroblasts of patients with HGPS and controls, including one family trio. HGPS patient-derived iPSCs are nearly indistinguishable from controls in terms of pluripotency, nuclear membrane integrity, as well as transcriptional and epigenetic profiles, and can differentiate into affected cell lineages recapitulating disease progression, despite the nuclear aberrations, altered gene expression, and epigenetic landscape inherent to the donor fibroblasts. These analyses demonstrate the power of iPSC reprogramming to reset the epigenetic landscape to a revitalized pluripotent state in the face of widespread epigenetic defects, validating their use to model the initiation and progression of disease in affected cell lineages.


Assuntos
Reprogramação Celular , Epigênese Genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lamina Tipo A/genética , Progéria/genética , Sequência de Bases , Estudos de Casos e Controles , Diferenciação Celular , Senescência Celular , Fibroblastos/patologia , Perfilação da Expressão Gênica , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Cariótipo , Lamina Tipo A/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Cultura Primária de Células , Progéria/metabolismo , Progéria/patologia
8.
Genetics ; 202(3): 903-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26715668

RESUMO

Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2A(Rts1) either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Tirosina/química , Proteína Quinase CDC2/genética , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Tirosina Fosfatases/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ras-GRF1/genética , ras-GRF1/metabolismo
9.
PLoS Genet ; 11(11): e1005425, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26587833

RESUMO

Changes in the locations and boundaries of heterochromatin are critical during development, and de novo assembly of silent chromatin in budding yeast is a well-studied model for how new sites of heterochromatin assemble. De novo assembly cannot occur in the G1 phase of the cell cycle and one to two divisions are needed for complete silent chromatin assembly and transcriptional repression. Mutation of DOT1, the histone H3 lysine 79 (K79) methyltransferase, and SET1, the histone H3 lysine 4 (K4) methyltransferase, speed de novo assembly. These observations have led to the model that regulated demethylation of histones may be a mechanism for how cells control the establishment of heterochromatin. We find that the abundance of Sir4, a protein required for the assembly of silent chromatin, decreases dramatically during a G1 arrest and therefore tested if changing the levels of Sir4 would also alter the speed of de novo establishment. Halving the level of Sir4 slows heterochromatin establishment, while increasing Sir4 speeds establishment. yku70Δ and ubp10Δ cells also speed de novo assembly, and like dot1Δ cells have defects in subtelomeric silencing, suggesting that these mutants may indirectly speed de novo establishment by liberating Sir4 from telomeres. Deleting RIF1 and RIF2, which suppresses the subtelomeric silencing defects in these mutants, rescues the advanced de novo establishment in yku70Δ and ubp10Δ cells, but not in dot1Δ cells, suggesting that YKU70 and UBP10 regulate Sir4 availability by modulating subtelomeric silencing, while DOT1 functions directly to regulate establishment. Our data support a model whereby the demethylation of histone H3 K79 and changes in Sir4 abundance and availability define two rate-limiting steps that regulate de novo assembly of heterochromatin.


Assuntos
Inativação Gênica , Heterocromatina/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Proteínas de Ligação a DNA/genética , Epistasia Genética , Fase G1 , Deleção de Genes , Mutação , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Telômero , Proteínas de Ligação a Telômeros/genética , Ubiquitina Tiolesterase/genética
10.
J Cell Biol ; 201(6): 843-62, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23751495

RESUMO

Cdk1 drives both mitotic entry and the metaphase-to-anaphase transition. Past work has shown that Wee1 inhibition of Cdk1 blocks mitotic entry. Here we show that the budding yeast Wee1 kinase, Swe1, also restrains the metaphase-to-anaphase transition by preventing Cdk1 phosphorylation and activation of the mitotic form of the anaphase-promoting complex/cyclosome (APC(Cdc20)). Deletion of SWE1 or its opposing phosphatase MIH1 (the budding yeast cdc25(+)) altered the timing of anaphase onset, and activation of the Swe1-dependent morphogenesis checkpoint or overexpression of Swe1 blocked cells in metaphase with reduced APC activity in vivo and in vitro. The morphogenesis checkpoint also depended on Cdc55, a regulatory subunit of protein phosphatase 2A (PP2A). cdc55Δ checkpoint defects were rescued by mutating 12 Cdk1 phosphorylation sites on the APC, demonstrating that the APC is a target of this checkpoint. These data suggest a model in which stepwise activation of Cdk1 and inhibition of PP2A(Cdc55) triggers anaphase onset.


Assuntos
Anáfase/fisiologia , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metáfase/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Genes cdc/fisiologia , Fosforilação/fisiologia , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Tirosina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação/fisiologia , ras-GRF1/genética , ras-GRF1/metabolismo
11.
Nat Chem Biol ; 6(10): 758-65, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20802492

RESUMO

Cytosolic and nuclear iron-sulfur (Fe-S) proteins play key roles in processes such as ribosome maturation, transcription and DNA repair-replication. For biosynthesis of their Fe-S clusters, a dedicated cytosolic Fe-S protein assembly (CIA) machinery is required. Here, we identify the essential flavoprotein Tah18 as a previously unrecognized CIA component and show by cell biological, biochemical and spectroscopic approaches that the complex of Tah18 and the CIA protein Dre2 is part of an electron transfer chain functioning in an early step of cytosolic Fe-S protein biogenesis. Electrons are transferred from NADPH via the FAD- and FMN-containing Tah18 to the Fe-S clusters of Dre2. This electron transfer chain is required for assembly of target but not scaffold Fe-S proteins, suggesting a need for reduction in the generation of stably inserted Fe-S clusters. The pathway is conserved in eukaryotes, as human Ndor1-Ciapin1 proteins can functionally replace yeast Tah18-Dre2.


Assuntos
Citosol/metabolismo , Elétrons , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/química , Transporte de Elétrons , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/metabolismo , NADP/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/metabolismo , Oxirredutases/deficiência , Oxirredutases/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sulfurtransferases/metabolismo , Fatores de Tempo
12.
Eur J Hum Genet ; 16(1): 105-14, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17805225

RESUMO

Susceptibility to coronary heart disease (CHD) has long been known to exhibit familial aggregation, with heritability estimated to be greater than 50%. The French Canadian population of the Saguenay-Lac Saint-Jean region of Quebec, Canada is descended from a founder population that settled this region 300-400 years ago and this may provide increased power to detect genes contributing to complex traits such as CHD. Probands with early-onset CHD, defined by angiographically determined coronary stenosis, and their relatives were recruited from this population (average sibship size of 6.4). Linkage analysis was performed following a genome-wide microsatellite marker scan on 42 families with 284 individuals. Nonparametric linkage (NPL) analysis provided suggestive evidence for a CHD susceptibility locus on chromosome 8 with an NPL score of 3.14 (P=0.001) at D8S1106. Linkage to this locus was verified by fine mapping in an enlarged sample of 50 families with 320 individuals. This analysis provided evidence of linkage at D8S552 (NPL score=3.53, P=0.0003), a marker that maps to the same location as D8S1106. Candidate genes in this region, including macrophage scavenger receptor 1, farnesyl-diphosphate farnesyltransferase 1, fibrinogen-like 1, and GATA-binding protein 4, were resequenced in all coding exons in both affected and unaffected individuals. Association studies with variants in these and five other genes did not identify a disease-associated mutation. In conclusion, a genome-wide scan and additional fine mapping provide evidence for a locus on chromosome 8 that contributes to CHD in a French Canadian population.


Assuntos
Cromossomos Humanos Par 8/genética , Doença das Coronárias/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Estudos de Coortes , DNA/genética , Feminino , Efeito Fundador , França/etnologia , Marcadores Genéticos , Genoma Humano , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Polimorfismo Genético , Quebeque
13.
Nat Genet ; 38(1): 93-100, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16311595

RESUMO

Methylmalonic aciduria and homocystinuria, cblC type (OMIM 277400), is the most common inborn error of vitamin B(12) (cobalamin) metabolism, with about 250 known cases. Affected individuals have developmental, hematological, neurological, metabolic, ophthalmologic and dermatologic clinical findings. Although considered a disease of infancy or childhood, some individuals develop symptoms in adulthood. The cblC locus was mapped to chromosome region 1p by linkage analysis. We refined the chromosomal interval using homozygosity mapping and haplotype analyses and identified the MMACHC gene. In 204 individuals, 42 different mutations were identified, many consistent with a loss of function of the protein product. One mutation, 271dupA, accounted for 40% of all disease alleles. Transduction of wild-type MMACHC into immortalized cblC fibroblast cell lines corrected the cellular phenotype. Molecular modeling predicts that the C-terminal region of the gene product folds similarly to TonB, a bacterial protein involved in energy transduction for cobalamin uptake.


Assuntos
Proteínas de Transporte/genética , Homocistinúria/genética , Erros Inatos do Metabolismo/genética , Ácido Metilmalônico/urina , Mutação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Mapeamento Cromossômico , Sequência Conservada , Fibroblastos/metabolismo , Haplótipos/genética , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Oxirredutases , Dobramento de Proteína , Homologia Estrutural de Proteína , Vitamina B 12/metabolismo
14.
Hum Mol Genet ; 14(24): 3963-71, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16301213

RESUMO

Inter-individual variation in gene expression has proven to be in part governed by genetic determinants, which may be trans- or cis-acting. The underlying cause of cis-acting regulatory variation has been identified in only a handful of the hundreds of genes shown to display differential allelic expression. In this report, we describe a systematic effort to map common cis-acting variants in 64 genes, using association methods in HapMap samples. We identified 16 loci (25%), each of which harbors common haplotypes that affect total expression of a gene, and a further 17 loci (27%) with evidence of haplotypes affecting relative allelic expression in heterozygote samples. Our survey suggests that detailed mapping of allele-specific in vivo expression will provide a rich source of regulatory SNPs or haplotypes that should be given high priority in association studies of human phenotypes.


Assuntos
Mapeamento Cromossômico/métodos , Haplótipos/genética , Sequências Reguladoras de Ácido Nucleico , Variação Genética , Humanos , Polimorfismo de Nucleotídeo Único
15.
Genome Res ; 15(11): 1584-91, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16251468

RESUMO

Cis-acting allelic variation in gene regulation is a source of phenotypic variation. Consequently, recent studies have experimentally screened human genes in an attempt to initiate a catalog of genes possessing cis-acting variants. In this study, we use human EST data in dbEST as the source of allelic expression data, and the HapMap database to provide expected allele frequencies in human populations. We demonstrate a greater concordance of allele frequencies estimated from human ESTs in dbEST with those derived from the CEPH HapMap sample representing Caucasians from northern and western Europe, than population samples obtained in Asia and Africa. Deviations between allele frequencies observed in EST databases and the ones obtained from the CEPH HapMap samples may result from common heritable cis-acting variants altering the relative allele distribution in RNA. We provide in silico as well as experimental evidence that this strategy does allow significant enrichment of genes harboring common heritable cis-acting polymorphisms in linkage disequilibrium with expressed alleles.


Assuntos
Alelos , Etiquetas de Sequências Expressas , Expressão Gênica , Variação Genética , Genoma Humano/genética , Software , Sequência de Bases , Linhagem Celular Tumoral , DNA Complementar/genética , Bases de Dados Genéticas , Europa (Continente) , Frequência do Gene , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Dados de Sequência Molecular , Análise de Sequência de DNA , População Branca/genética
16.
Hum Mutat ; 24(6): 509-16, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15523652

RESUMO

Mutations in the MMAA gene on human chromosome 4q31.21 result in vitamin B12-responsive methylmalonic aciduria (cblA complementation group) due to deficiency in the synthesis of adenosylcobalamin. Genomic DNA from 37 cblA patients, diagnosed on the basis of cellular adenosylcobalamin synthesis, methylmalonyl-coenzyme A (CoA) mutase function, and complementation analysis, was analyzed for deleterious mutations in the MMAA gene by DNA sequencing of exons and flanking sequences. A total of 18 novel mutations were identified, bringing the total number of mutations identified in 37 cblA patients to 22. A total of 13 mutations result in premature stop codons; three are splice site defects; and six are missense mutations that occur at highly conserved residues. Eight of these mutations were common to two or more individuals. One mutation, c.433C>T (R145X), represents 43% of pathogenic alleles and a common haplotype was identified. Restriction endonuclease or heteroduplex diagnostic tests were designed to confirm mutations. None of the sequence changes identified in cblA patients were found in 100 alleles from unrelated control individuals.


Assuntos
Proteínas de Membrana Transportadoras/genética , Erros Inatos do Metabolismo/genética , Proteínas Mitocondriais/genética , Mutação , Vitamina B 12/metabolismo , Pré-Escolar , Cromossomos Humanos Par 4 , Cobamidas/biossíntese , Análise Mutacional de DNA , Éxons , Feminino , Teste de Complementação Genética , Haplótipos , Humanos , Lactente , Recém-Nascido , Masculino , Ácido Metilmalônico/urina , Proteínas de Transporte da Membrana Mitocondrial , Polimorfismo de Nucleotídeo Único
17.
Nature ; 427(6975): 636-40, 2004 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-14737177

RESUMO

Leprosy is caused by Mycobacterium leprae and affects about 700,000 individuals each year. It has long been thought that leprosy has a strong genetic component, and recently we mapped a leprosy susceptibility locus to chromosome 6 region q25-q26 (ref. 3). Here we investigate this region further by using a systematic association scan of the chromosomal interval most likely to harbour this leprosy susceptibility locus. In 197 Vietnamese families we found a significant association between leprosy and 17 markers located in a block of approx. 80 kilobases overlapping the 5' regulatory region shared by the Parkinson's disease gene PARK2 and the co-regulated gene PACRG. Possession of as few as two of the 17 risk alleles was highly predictive of leprosy. This was confirmed in a sample of 975 unrelated leprosy cases and controls from Brazil in whom the same alleles were strongly associated with leprosy. Variants in the regulatory region shared by PARK2 and PACRG therefore act as common risk factors for leprosy.


Assuntos
Predisposição Genética para Doença , Hanseníase/genética , Proteínas/genética , Ubiquitina-Proteína Ligases/genética , Alelos , Brasil , Estudos de Casos e Controles , Mapeamento Cromossômico , Cromossomos Humanos Par 6/genética , Perfilação da Expressão Gênica , Haplótipos , Humanos , Proteínas dos Microfilamentos , Chaperonas Moleculares , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Vietnã
18.
Proc Natl Acad Sci U S A ; 99(24): 15554-9, 2002 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-12438653

RESUMO

Vitamin B(12) (cobalamin) is an essential cofactor of two enzymes, methionine synthase and methylmalonyl-CoA mutase. The conversion of the vitamin to its coenzymes requires a series of biochemical modifications for which several genetic diseases are known, comprising eight complementation groups (cblA through cblH). The objective of this study was to clone the gene responsible for the cblA complementation group thought to represent a mitochondrial cobalamin reductase. Examination of bacterial operons containing genes in close proximity to the gene for methylmalonyl-CoA mutase and searching for orthologous sequences in the human genome yielded potential candidates. A candidate gene was evaluated for deleterious mutations in cblA patient cell lines, which revealed a 4-bp deletion in three cell lines, as well as an 8-bp insertion and point mutations causing a stop codon and an amino acid substitution. These data confirm that the identified gene, MMAA, corresponds to the cblA complementation group. It is located on chromosome 4q31.1-2 and encodes a predicted protein of 418 aa. A Northern blot revealed RNA species of 1.4, 2.6, and 5.5 kb predominating in liver and skeletal muscle. The deduced amino acid sequence reveals a domain structure, which belongs to the AAA ATPase superfamily that encompasses a wide variety of proteins including ATP-binding cassette transporter accessory proteins that bind ATP and GTP. We speculate that we have identified a component of a transporter or an accessory protein that is involved in the translocation of vitamin B(12) into mitochondria.


Assuntos
Cromossomos Humanos Par 4/genética , Genes , Ácido Metilmalônico/sangue , Metilmalonil-CoA Mutase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Linhagem Celular , Mapeamento Cromossômico , Análise Mutacional de DNA , Feminino , Fibroblastos/enzimologia , Teste de Complementação Genética , Análise Heteroduplex , Humanos , Lactente , Fígado/enzimologia , Masculino , Erros Inatos do Metabolismo/sangue , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Mutagênese Insercional , Mutação de Sentido Incorreto , Especificidade de Órgãos , Mutação Puntual , Sítios de Splice de RNA , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Homologia de Sequência de Aminoácidos
19.
Am J Hum Genet ; 71(1): 143-53, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12068375

RESUMO

Mutations in the MTR gene, which encodes methionine synthase on human chromosome 1p43, result in the methylcobalamin deficiency G (cblG) disorder, which is characterized by homocystinuria, hyperhomocysteinemia, and hypomethioninemia. To investigate the molecular basis of the disorder, we have characterized the structure of the MTR gene, thereby identifying exon-intron boundaries. This enabled amplification of each of the 33 exons of the gene, from genomic DNA from a panel of 21 patients with cblG. Thirteen novel mutations were identified. These included five deletions (c.12-13delGC, c.381delA, c.2101delT, c.2669-2670delTG, and c.2796-2800delAAGTC) and two nonsense mutations (R585X and E1204X) that would result in synthesis of truncated proteins that lack portions critical for enzyme function. One mutation was identified that resulted in conversion of A to C of the invariant A of the 3' splice site of intron 9. Five missense mutations (A410P, S437Y, S450H, H595P, and I804T) were identified. The latter mutations, as well as the splice-site mutation, were not detected in a panel of 50 anonymous DNA samples, suggesting that these sequence changes are not polymorphisms present in the general population. In addition, a previously described missense mutation, P1173L, was detected in 16 patients in an expanded panel of 24 patients with cblG. Analysis of haplotypes constructed using sequence polymorphisms identified within the MTR gene demonstrated that this mutation, a C-->T transition in a CpG island, has occurred on at least two separate genetic backgrounds.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/deficiência , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Hiper-Homocisteinemia/enzimologia , Hiper-Homocisteinemia/genética , Mutação de Sentido Incorreto , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Sequência de Bases , Cromossomos Humanos Par 1/genética , Códon sem Sentido , Análise Mutacional de DNA , Éxons , Variação Genética , Genótipo , Haplótipos , Humanos , Íntrons , Dados de Sequência Molecular , Fenótipo , Polimorfismo Genético , Deleção de Sequência
20.
Diabetes ; 51(5): 1629-34, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11978666

RESUMO

Diabetes and obesity have long been known to be related. The recently characterized adipocyte hormone resistin (also called FIZZ3/ADSF) has been implicated as a molecular link between impaired glucose tolerance (IGT) and obesity in mice. A search for sequence variants at the human resistin locus identified nine single-nucleotide polymorphisms (SNPs) but no coding variants. An investigation into the association of these SNPs with diabetes and obesity revealed two 5' flanking variants (g.-537 and g.-420), in strong linkage disequilibrium, that are associated with BMI. In nondiabetic individuals from the Quebec City area and the Saguenay-Lac-St-Jean region of Quebec, the g.-537 mutation (allelic frequency = 0.04) was significantly associated with an increase in BMI (P = 0.03 and P = 0.01, respectively). When the data from these two populations were combined and adjusted for age and sex, both the g.-537 (odds ratio [OR] 2.72, 95% CI 1.28-5.81) and the g.-420 variants (1.58, 1.06-2.35) were associated with an increased risk for a BMI > or =30 kg/m(2). In contrast, in case/control and family-based study populations from Scandinavia, we saw no effect on BMI with either of these promoter variants. No association was seen with diabetes in any of the population samples.


Assuntos
Diabetes Mellitus/genética , Hormônios Ectópicos/genética , Peptídeos e Proteínas de Sinalização Intercelular , Obesidade , Polimorfismo de Nucleotídeo Único , Regiões 5' não Traduzidas/genética , Adulto , Feminino , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Resistina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA