Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1336014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38932775

RESUMO

Introduction: Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives: This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method: The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis: Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions: Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.


Assuntos
Monitoramento Biológico , Resíduos de Praguicidas , Humanos , Resíduos de Praguicidas/urina , Resíduos de Praguicidas/análise , Monitoramento Biológico/métodos , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas/métodos , Exposição Ambiental/análise , Cromatografia Líquida
2.
Anal Bioanal Chem ; 415(25): 6165-6176, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532864

RESUMO

An automated microextraction by packed sorbent followed by liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS) method was developed for the determination of four endocrine disruptors-parabens, benzophenones, and synthetic phenolic antioxidants-in wastewater samples. The method utilizes a lab-made repackable MEPS device and a multi-syringe robotic platform that provides flexibility to test small quantities (2 mg) of multiple extraction phases and enables high-throughput capabilities for efficient method development. The overall performance of the MEPS procedure, including the investigation of influencing variables and the optimization of operational parameters for the robotic platform, was comprehensively studied through univariate and multivariate experiments. Under optimized conditions, the target analytes were effectively extracted from a small sample volume of 1.5 mL, with competitive detectability and analytical confidence. The limits of detection ranged from 0.15 to 0.30 ng L-1, and the intra-day and inter-day relative standard deviations were between 3 and 21%. The method's applicability was successfully demonstrated by determining methylparaben, propylparaben, butylated hydroxyanisole, and oxybenzone in wastewater samples collected from the São Carlos (SP, Brazil) river. Overall, the developed method proved to be a fast, sensitive, reliable, and environmentally friendly analytical tool for water quality monitoring.

3.
Analyst ; 140(22): 7768-75, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26460233

RESUMO

Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.


Assuntos
Antagonistas Adrenérgicos beta/isolamento & purificação , Impressão Molecular/métodos , Oxprenolol/isolamento & purificação , Polímeros/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Humanos , Interações Hidrofóbicas e Hidrofílicas
4.
Anal Bioanal Chem ; 405(24): 7687-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23942568

RESUMO

A new restricted access molecularly imprinted polymer coated with bovine serum albumin (RAMIP-BSA) was developed, characterized, and used for direct analysis of chlorpromazine in human plasma samples. The RAMIP-BSA was synthesized using chlorpromazine, methacrylic acid, and ethylene glycol dimethacrylate as template, functional monomer, and cross-linker, respectively. Glycerol dimethacrylate and hydroxy methyl methacrylate were used to promote a hydrophilic surface (high density of hydroxyl groups). Afterward, the polymer was coated with BSA using glutaraldehyde as cross-linker, resulting in a protein chemical shield around it. The material was able to eliminate ca. 99% of protein when a 44-mg mL(-1) BSA aqueous solution was passed through it. The RAMIP-BSA was packed in a column and used for direct analysis of chlorpromazine in human plasma samples in an online column switching high-performance liquid chromatography system. The analytical calibration curve was prepared in a pool of human plasma samples with chlorpromazine concentrations ranging from 30 to 350 µg L(-1). The correlation coefficient obtained was 0.995 and the limit of quantification was 30 µg L(-1). Intra-day and inter-day precision and accuracy presented variation coefficients and relative errors lower than 15% and within -15 and 15%, respectively. The sample throughput was 3 h(-1) (sample preparation and chromatographic analysis steps) and the same RAMIP-BSA column was efficiently used for about 90 cycles.


Assuntos
Albuminas/química , Clorpromazina/sangue , Impressão Molecular , Polímeros/química , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Ensaios de Triagem em Larga Escala , Humanos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Reprodutibilidade dos Testes , Soroalbumina Bovina
5.
J Pharm Biomed Anal ; 73: 53-8, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22555013

RESUMO

A two-phase liquid phase microextraction using a hollow fiber combined with injection port derivatization and gas chromatographic analysis was developed for extracting and detecting fluoxetine (FLU) and norfluoxetine (NOR) in human plasma. Simultaneous extraction in a multiple tube shaker was used and, afterward, the organic phase was simply injected together with the derivatizing agent n-methyl-bis(trifluoroacetamide) (MBTFA). Factors influencing injection port derivatization, and several extraction parameters were optimized. Under optimal conditions the proposed method provided linearity between 10 and 500ngmL(-1) (R(2)=0.9973) for FLU, and between 15 and 500ngmL(-1) (R(2)=0.9972) for NOR. Intra-assay precision (RSD) between 4.8 and 13.1% and inter-assay between 5.4 and 14.2% were obtained, with detection and quantification limits of 3 and 10ngmL(-1), and of 5 and 15ngmL(-1) for FLU and NOR, respectively, using selected ion monitoring mode. Selectivity, short term stability and extraction efficiency were also evaluated. This method was simple, cheap, and environmentally friendly, yielding significant reduction of solvents and derivatizing agent consumption. The method was successfully applied to the analysis of samples from 5 patients under fluoxetine treatment.


Assuntos
Monitoramento de Medicamentos/métodos , Fluoxetina/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Líquida/métodos , Inibidores Seletivos de Recaptação de Serotonina/sangue , Fluoxetina/administração & dosagem , Fluoxetina/sangue , Fluoxetina/uso terapêutico , Humanos , Cinética , Modelos Lineares , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Fatores de Tempo
6.
J Chromatogr Sci ; 44(6): 340-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16884589

RESUMO

Solid-phase microextraction (SPME)-liquid chromatography (LC) is used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. Extraction conditions are optimized using a 2(3) factorial design plus a central point to evaluate the influence of the time, temperature, and matrix pH. A Polydimethylsiloxane-divinylbenzene (60-mum film thickness) fiber is selected after the assessment of different types of coating. The chromatographic separation is realized using a C(18) column (150 x 4.6 mm, 5-microm particles), ammonium acetate buffer (0.05 mol/L, pH 5.50)-acetonitrile (55:45 v/v) with 0.1% of triethylamine as mobile phase and UV-vis detection at 214 nm. Among the factorial design conditions evaluated, the best results are obtained at a pH 11.0, temperature of 30 degrees C, and extraction time of 45 min. The proposed method, using a lab-made SPME-LC interface, allowed the determination of tricyclic antidepressants in in plasma at therapeutic concentration levels.


Assuntos
Antidepressivos Tricíclicos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Dibenzazepinas/sangue , Microextração em Fase Sólida/métodos , Dimetilpolisiloxanos , Humanos , Concentração de Íons de Hidrogênio , Polivinil , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA