Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 173(Pt B): 113129, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34784523

RESUMO

To avoid loss of genetic information in environmental DNA (eDNA) field samples, the preservation of nucleic acids during field sampling is a critical step. In the development of standard operating procedures (SOPs) for eDNA-based compliance monitoring, the effect of different routinely used sediment preservations on biological community structures serving as bioindicators has gone untested. We compared eDNA metabarcoding results of marine bacterial communities from sample aliquots that were treated with a nucleic acid preservation solution (treated samples) and aliquots that were frozen without further treatment (non-treated samples). Sediment samples were obtained from coastal locations subjected to different stressors (aquaculture, urbanization, industry). DNA extraction efficiency, bacterial community profiles, and measures of alpha- and beta-diversity were highly congruent between treated and non-treated samples. As both preservation methods provide the same relevant information to environmental managers and regulators, we recommend the inclusion of both methods into SOPs for biomonitoring in marine coastal environments.


Assuntos
Monitoramento Biológico , Ecossistema , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Genômica
2.
Front Microbiol ; 12: 637811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995296

RESUMO

The analysis of benthic bacterial community structure has emerged as a powerful alternative to traditional microscopy-based taxonomic approaches to monitor aquaculture disturbance in coastal environments. However, local bacterial diversity and community composition vary with season, biogeographic region, hydrology, sediment texture, and aquafarm-specific parameters. Therefore, without an understanding of the inherent variation contained within community complexes, bacterial diversity surveys conducted at individual farms, countries, or specific seasons may not be able to infer global universal pictures of bacterial community diversity and composition at different degrees of aquaculture disturbance. We have analyzed environmental DNA (eDNA) metabarcodes (V3-V4 region of the hypervariable SSU rRNA gene) of 138 samples of different farms located in different major salmon-producing countries. For these samples, we identified universal bacterial core taxa that indicate high, moderate, and low aquaculture impact, regardless of sampling season, sampled country, seafloor substrate type, or local farming and environmental conditions. We also discuss bacterial taxon groups that are specific for individual local conditions. We then link the metabolic properties of the identified bacterial taxon groups to benthic processes, which provides a better understanding of universal benthic ecosystem function(ing) of coastal aquaculture sites. Our results may further guide the continuing development of a practical and generic bacterial eDNA-based environmental monitoring approach.

3.
Comput Struct Biotechnol J ; 19: 2256-2268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995917

RESUMO

Environmental DNA metabarcoding is a powerful approach for use in biomonitoring and impact assessments. Amplicon-based eDNA sequence data are characteristically highly divergent in sequencing depth (total reads per sample) as influenced inter alia by the number of samples simultaneously analyzed per sequencing run. The random forest (RF) machine learning algorithm has been successfully employed to accurately classify unknown samples into monitoring categories. To employ RF to eDNA data, and avoid sequencing-depth artifacts, sequence data across samples are normalized using rarefaction, a process that inherently loses information. The aim of this study was to inform future sampling designs in terms of the relationship between sampling depth and RF accuracy. We analyzed three published and one new bacterial amplicon datasets, using a RF, based initially on the maximal rarefied data available (minimum mean of > 30,000 reads across all datasets) to give our baseline performance. We then evaluated the RF classification success based on increasingly rarefied datasets. We found that extreme to moderate rarefaction (50-5000 sequences per sample) was sufficient to achieve prediction performance commensurate to the full data, depending on the classification task. We did not find that the number of classification classes, data balance across classes, or the total number of sequences or samples, were associated with predictive accuracy. We identified the ability of the training data to adequately characterize the classes being mapped as the most important criterion and discuss how this finding can inform future sampling design for eDNA based biomonitoring to reduce costs and computation time.

4.
Mol Ecol ; 30(13): 2988-3006, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32285497

RESUMO

Increasing anthropogenic impact and global change effects on natural ecosystems has prompted the development of less expensive and more efficient bioassessments methodologies. One promising approach is the integration of DNA metabarcoding in environmental monitoring. A critical step in this process is the inference of ecological quality (EQ) status from identified molecular bioindicator signatures that mirror environmental classification based on standard macroinvertebrate surveys. The most promising approaches to infer EQ from biotic indices (BI) are supervised machine learning (SML) and the calculation of indicator values (IndVal). In this study we compared the performance of both approaches using DNA metabarcodes of bacteria and ciliates as bioindicators obtained from 152 samples collected from seven Norwegian salmon farms. Results from standard macroinvertebrate-monitoring of the same samples were used as reference to compare the accuracy of both approaches. First, SML outperformed the IndVal approach to infer EQ from eDNA metabarcodes. The Random Forest (RF) algorithm appeared to be less sensitive to noisy data (a typical feature of massive environmental sequence data sets) and uneven data coverage across EQ classes (a typical feature of environmental compliance monitoring scheme) compared to a widely used method to infer IndVals for the calculation of a BI. Second, bacteria allowed for a more accurate EQ assessment than ciliate eDNA metabarcodes. For the implementation of DNA metabarcoding into routine monitoring programmes to assess EQ around salmon aquaculture cages, we therefore recommend bacterial DNA metabarcodes in combination with SML to classify EQ categories based on molecular signatures.


Assuntos
Ecossistema , Salmão , Animais , Aquicultura , Biodiversidade , Código de Barras de DNA Taxonômico , Meio Ambiente , Monitoramento Ambiental , Noruega , Salmão/genética , Aprendizado de Máquina Supervisionado
5.
Water Res ; 144: 322-331, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053623

RESUMO

Knowledge-driven management for wastewater treatment plant (WWTP) performance becomes increasingly important considering the globally growing production of wastewater and the rising demand of clean water supply. Even though the potential of microbial organisms (bacteria and protists) as bioindicators for WWTP performance is well known, it is far from being fully exploited for routine monitoring programs. Therefore, we here used massive sequencing of environmental (e)DNA metabarcodes from bacterial (V3-V4 region of the SSU rRNA gene) and eukaryote (V9 region of the SSU rRNA gene) communities in 21 activated sludge samples obtained from full-scale municipal WWTPs in Germany. Microbial community patterns were compared to standard WWTP operating parameters and two traditionally used WWTP performance indicators (Sludge Biotic Index and Sludge Index). Both indices showed low concordance and hardly correlated with chemical WWTP performance parameters nor did they correlate with microbial community structures. In contrast, microbial community profiles significantly correlated with WWTP performance parameters and operating conditions of the plants under study. Therefore, eDNA metabarcode profiles of whole microbial communities indicate the performance of WWTP and can provide useful information for management strategies. We here suggest a strategy for the development of an eDNA metabarcode based bioindicator system, which can be implemented in future standard monitoring programs for WWTP performance and effluent quality.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Microbiota/fisiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Bactérias/genética , Células Eucarióticas/fisiologia , Alemanha , Microbiota/genética , Reação em Cadeia da Polimerase , RNA Ribossômico , Esgotos/microbiologia , Águas Residuárias/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA