Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 63(1): 100156, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843683

RESUMO

N-acyl-phosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD) is a zinc metallohydrolase enzyme that converts NAPEs to bioactive N-acyl-ethanolamides. Altered NAPE-PLD activity may contribute to pathogenesis of obesity, diabetes, atherosclerosis, and neurological diseases. Selective measurement of NAPE-PLD activity is challenging, however, because of alternative phospholipase pathways for NAPE hydrolysis. Previous methods to measure NAPE-PLD activity involved addition of exogenous NAPE followed by TLC or LC/MS/MS, which are time and resource intensive. Recently, NAPE-PLD activity in cells has been assayed using the fluorogenic NAPE analogs PED-A1 and PED6, but these substrates also detect the activity of serine hydrolase-type lipases PLA1 and PLA2. To create a fluorescence assay that selectively measured cellular NAPE-PLD activity, we synthesized an analog of PED-A1 (flame-NAPE) where the sn-1 ester bond was replaced with an N-methyl amide to create resistance to PLA1 hydrolysis. Recombinant NAPE-PLD produced fluorescence when incubated with either PED-A1 or flame-NAPE, whereas PLA1 only produced fluorescence when incubated with PED-A1. Furthermore, fluorescence in HepG2 cells using PED-A1 could be partially blocked by either biothionol (a selective NAPE-PLD inhibitor) or tetrahydrolipstatin (an inhibitor of a broad spectrum of serine hydrolase-type lipases). In contrast, fluorescence assayed in HepG2 cells using flame-NAPE could only be blocked by biothionol. In multiple cell types, the phospholipase activity detected using flame-NAPE was significantly more sensitive to biothionol inhibition than that detected using PED-A1. Thus, using flame-NAPE to measure phospholipase activity provides a rapid and selective method to measure NAPE-PLD activity in cells and tissues.


Assuntos
Fosfatidiletanolaminas
2.
Antimicrob Agents Chemother ; 65(12): e0091921, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516248

RESUMO

Staphylococcus aureus is a serious threat to public health due to the rise of antibiotic resistance in this organism, which can prolong or exacerbate skin and soft tissue infections (SSTIs). Methicillin-resistant S. aureus is a Gram-positive bacterium and a leading cause of SSTIs. As such, many efforts are under way to develop therapies that target essential biological processes in S. aureus. Antimicrobial photodynamic therapy is an effective alternative to antibiotics; therefore we developed an approach to simultaneously expose S. aureus to intracellular and extracellular photosensitizers. A near infrared photosensitizer was conjugated to human monoclonal antibodies (MAbs) that target the S. aureus iron-regulated surface determinant (Isd) heme acquisition proteins. In addition, the compound VU0038882 was developed to increase photoactivatable porphyrins within the cell. Combinatorial photodynamic treatment of drug-resistant S. aureus exposed to VU0038882 and conjugated anti-Isd MAbs proved to be an effective antibacterial strategy in vitro and in a murine model of SSTIs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
3.
ACS Chem Biol ; 16(5): 787-793, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877812

RESUMO

Chemical synthesis has been described as a central science. Its practice provides access to the chemical structures of known and/or designed function. In particular, human health is greatly impacted by synthesis that enables advancements in both basic science discoveries in chemical biology as well as translational research that can lead to new therapeutics. To support the chemical synthesis needs of investigators across campus, the Vanderbilt Institute of Chemical Biology established a chemical synthesis core as part of its foundation in 2008. Provided in this Review are examples of synthetic products, known and designed, produced in the core over the past 10 years.


Assuntos
Técnicas de Química Sintética/métodos , Indicadores e Reagentes/síntese química , Preparações Farmacêuticas/síntese química , Animais , Produtos Biológicos/síntese química , Fenômenos Biofísicos , Meios de Contraste/síntese química , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pesquisa , Estudos Retrospectivos , Estereoisomerismo
4.
Org Lett ; 21(3): 679-682, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645132

RESUMO

A convergent total synthesis of the siderophore coelichelin is described. The synthetic route also provided access to acetyl coelichelin and other congeners of the parent siderophore. The synthetic products were evaluated for their ability to bind ferric iron and promote growth of a siderophore-deficient strain of the Gram-negative bacterium Pseudomonas aeruginosa under iron restriction conditions. The results of these studies indicate coelichelin and several derivatives serve as ferric iron delivery vehicles for P. aeruginosa.


Assuntos
Ferro/metabolismo , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/síntese química , Sideróforos/metabolismo , Sondas Moleculares/síntese química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas Moleculares/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Sideróforos/química , Sideróforos/farmacologia
5.
Org Biomol Chem ; 16(31): 5575-5579, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30051127

RESUMO

Thallium (Tl+) flux assays enable imaging of potassium (K+) channel activity in cells and tissues by exploiting the permeability of K+ channels to Tl+ coupled with a fluorescent Tl+ sensitive dye. Common Tl+ sensing dyes utilize fluorescein as the fluorophore though fluorescein exhibits certain undesirable properties in these assays including short excitation wavelengths and pH sensitivity. To overcome these drawbacks, the replacement of fluorescein with rhodols was investigated. A library of 13 rhodol-based Tl+ sensors was synthesized and their properties and performance in Tl+ flux assays evaluated. The dimethyl rhodol Tl+ sensor emerged as the best of the series and performed comparably to fluorescein-based sensors while demonstrating greater pH tolerance in the physiological range and excitation and emission spectra 30 nm red-shifted from fluorescein.


Assuntos
Corantes Fluorescentes/química , Imagem Óptica/métodos , Canais de Potássio/metabolismo , Tálio/análise , Xantonas/química , Células HEK293 , Humanos , Metilação , Microscopia Confocal/métodos , Espectrometria de Fluorescência/métodos , Tálio/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(32): E6652-E6659, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739897

RESUMO

Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Coproporfirinas/biossíntese , Fármacos Fotossensibilizantes/metabolismo , Fototerapia , Infecções Cutâneas Estafilocócicas/enzimologia , Infecções Cutâneas Estafilocócicas/terapia , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/genética , Coproporfirinogênio Oxidase/genética , Coproporfirinas/genética , Modelos Animais de Doenças , Camundongos , Staphylococcus aureus/genética
7.
Cell Chem Biol ; 23(11): 1351-1361, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27773628

RESUMO

The rising problem of antimicrobial resistance in Staphylococcus aureus necessitates the discovery of novel therapeutic targets for small-molecule intervention. A major obstacle of drug discovery is identifying the target of molecules selected from high-throughput phenotypic assays. Here, we show that the toxicity of a small molecule termed '882 is dependent on the constitutive activity of the S. aureus virulence regulator SaeRS, uncovering a link between virulence factor production and energy generation. A series of genetic, physiological, and biochemical analyses reveal that '882 inhibits iron-sulfur (Fe-S) cluster assembly most likely through inhibition of the Suf complex, which synthesizes Fe-S clusters. In support of this, '882 supplementation results in decreased activity of the Fe-S cluster-dependent enzyme aconitase. Further information regarding the effects of '882 has deepened our understanding of virulence regulation and demonstrates the potential for small-molecule modulation of Fe-S cluster assembly in S. aureus and other pathogens.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Fatores de Virulência/metabolismo , Aconitato Hidratase/metabolismo , Antibacterianos/química , Descoberta de Drogas , Humanos , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Virulência/efeitos dos fármacos
8.
ACS Infect Dis ; 2(8): 572-8, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626297

RESUMO

Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Óxido Nítrico Sintase/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
9.
ACS Chem Biol ; 11(5): 1354-61, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26890615

RESUMO

Small molecules active in the pathogenic bacterium Staphylococcus aureus are valuable tools for the study of its basic biology and pathogenesis, and many molecules may provide leads for novel therapeutics. We have previously reported a small molecule, 1, which activates endogenous heme biosynthesis in S. aureus, leading to an accumulation of intracellular heme. In addition to this novel activity, 1 also exhibits toxicity towards S. aureus growing under fermentative conditions. To determine if these activities are linked and establish what features of the molecule are required for activity, we synthesized a library of analogs around the structure of 1 and screened them for activation of heme biosynthesis and anaerobic toxicity to investigate structure-activity relationships. The results of this analysis suggest that these activities are not linked. Furthermore, we have identified the structural features that promote each activity and have established two classes of molecules: activators of heme biosynthesis and inhibitors of anaerobic growth. These molecules will serve as useful probes for their respective activities without concern for the off target effects of the parent compound.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Heme/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Bactérias Anaeróbias/efeitos dos fármacos , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/metabolismo , Humanos , Ferro/metabolismo , Oxigênio/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade
10.
PLoS Pathog ; 10(3): e1004044, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675902

RESUMO

Two-component signaling systems (TCSs) are one of the mechanisms that bacteria employ to sense and adapt to changes in the environment. A prototypical TCS functions as a phosphorelay from a membrane-bound sensor histidine kinase (HK) to a cytoplasmic response regulator (RR) that controls target gene expression. Despite significant homology in the signaling domains of HKs and RRs, TCSs are thought to typically function as linear systems with little to no cross-talk between non-cognate HK-RR pairs. Here we have identified several cell envelope acting compounds that stimulate a previously uncharacterized Bacillus anthracis TCS. Furthermore, this TCS cross-signals with the heme sensing TCS HssRS; therefore, we have named it HssRS interfacing TCS (HitRS). HssRS reciprocates cross-talk to HitRS, suggesting a link between heme toxicity and cell envelope stress. The signaling between HssRS and HitRS occurs in the parental B. anthracis strain; therefore, we classify HssRS-HitRS interactions as cross-regulation. Cross-talk between HssRS and HitRS occurs at both HK-RR and post-RR signaling junctions. Finally, HitRS also regulates a previously unstudied ABC transporter implicating this transporter in the response to cell envelope stress. This chemical biology approach to probing TCS signaling provides a new model for understanding how bacterial signaling networks are integrated to enable adaptation to complex environments such as those encountered during colonization of the vertebrate host.


Assuntos
Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Heme/metabolismo , Transdução de Sinais/fisiologia , Parede Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Estresse Fisiológico
11.
Proc Natl Acad Sci U S A ; 110(20): 8206-11, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630262

RESUMO

Staphylococcus aureus is a significant infectious threat to global public health. Acquisition or synthesis of heme is required for S. aureus to capture energy through respiration, but an excess of this critical cofactor is toxic to bacteria. S. aureus employs the heme sensor system (HssRS) to overcome heme toxicity; however, the mechanism of heme sensing is not defined. Here, we describe the identification of a small molecule activator of HssRS that induces endogenous heme biosynthesis by perturbing central metabolism. This molecule is toxic to fermenting S. aureus, including clinically relevant small colony variants. The utility of targeting fermenting bacteria is exemplified by the fact that this compound prevents the emergence of antibiotic resistance, enhances phagocyte killing, and reduces S. aureus pathogenesis. Not only is this small molecule a powerful tool for studying bacterial heme biosynthesis and central metabolism; it also establishes targeting of fermentation as a viable antibacterial strategy.


Assuntos
Fermentação , Regulação Bacteriana da Expressão Gênica , Heme/biossíntese , Naftóis/farmacologia , Pirazóis/farmacologia , Staphylococcus aureus/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Técnicas de Química Combinatória , Desenho de Fármacos , Glicólise , Heme Oxigenase (Desciclizante)/metabolismo , Concentração Inibidora 50 , Leucócitos/citologia , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Varredura , Fagócitos/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA