Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 29, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755323

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell-surface immunoreceptor expressed on microglia, osteoclasts, dendritic cells and macrophages. Heterozygous loss-of-function mutations in TREM2, including mutations enhancing shedding form the cell surface, have been associated with myelin/neuronal loss and neuroinflammation in neurodegenerative diseases, such as Alzheimer`s disease and Frontotemporal Dementia. Using the cuprizone model, we investigated the involvement of soluble and cleavage-reduced TREM2 on central myelination processes in cleavage-reduced (TREM2-IPD), soluble-only (TREM2-sol), knockout (TREM2-KO) and wild-type (WT) mice. The TREM2-sol mouse is a new model with selective elimination of plasma membrane TREM2 and a reduced expression of soluble TREM2. In the acute cuprizone model demyelination and remyelination events were reflected by a T2-weighted signal intensity change in magnetic resonance imaging (MRI), most prominently in the external capsule (EC). In contrast to WT and TREM2-IPD, TREM2-sol and TREM2-KO showed an additional increase in MRI signal during the recovery phase. Histological analyses of TREM2-IPD animals revealed no recovery of neuroinflammation as well as of the lysosomal marker LAMP-1 and displayed enhanced cytokine/chemokine levels in the brain. TREM2-sol and, to a much lesser extent, TREM2-KO, however, despite presenting reduced levels of some cytokines/chemokines, showed persistent microgliosis and astrocytosis during recovery, with both homeostatic (TMEM119) as well as activated (LAMP-1) microglia markers increased. This was accompanied, specifically in the EC, by no myelin recovery, with appearance of myelin debris and axonal pathology, while oligodendrocytes recovered. In the chronic model consisting of 12-week cuprizone administration followed by 3-week recovery TREM2-IPD displayed sustained microgliosis and enhanced remyelination in the recovery phase. Taken together, our data suggest that sustained microglia activation led to increased remyelination, whereas microglia without plasma membrane TREM2 and only soluble TREM2 had reduced phagocytic activity despite efficient lysosomal function, as observed in bone marrow-derived macrophages, leading to a dysfunctional phenotype with improper myelin debris removal, lack of remyelination and axonal pathology following cuprizone intoxication.


Assuntos
Doenças Desmielinizantes , Glicoproteínas de Membrana , Receptores Imunológicos , Animais , Camundongos , Cuprizona/toxicidade , Citocinas/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Modelos Genéticos , Bainha de Mielina/metabolismo , Doenças Neuroinflamatórias , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
2.
Cell Rep ; 39(9): 110883, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649351

RESUMO

TREM2 is a transmembrane protein expressed exclusively in microglia in the brain that regulates inflammatory responses to pathological conditions. Proteolytic cleavage of membrane TREM2 affects microglial function and is associated with Alzheimer's disease, but the consequence of reduced TREM2 proteolytic cleavage has not been determined. Here, we generate a transgenic mouse model of reduced Trem2 shedding (Trem2-Ile-Pro-Asp [IPD]) through amino-acid substitution of an ADAM-protease recognition site. We show that Trem2-IPD mice display increased Trem2 cell-surface-receptor load, survival, and function in myeloid cells. Using single-cell transcriptomic profiling of mouse cortex, we show that sustained Trem2 stabilization induces a shift of fate in microglial maturation and accelerates microglial responses to Aß pathology in a mouse model of Alzheimer's disease. Our data indicate that reduction of Trem2 proteolytic cleavage aggravates neuroinflammation during the course of Alzheimer's disease pathology, suggesting that TREM2 shedding is a critical regulator of microglial activity in pathological states.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
3.
Neurochem Int ; 131: 104552, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545995

RESUMO

The inhibitory activity of (±)-citalopram on human (h) α3ß4, α4ß2, and α7 nicotinic acetylcholine receptors (AChRs) was determined by Ca2+ influx assays, whereas its effect on rat α9α10 and mouse habenular α3ß4* AChRs by electrophysiological recordings. The Ca2+ influx results clearly establish that (±)-citalopram inhibits (IC50's in µM) hα3ß4 AChRs (5.1 ±â€¯1.3) with higher potency than that for hα7 (18.8 ±â€¯1.1) and hα4ß2 (19.1 ±â€¯4.2) AChRs. This is in agreement with the [3H]imipramine competition binding results indicating that (±)-citalopram binds to imipramine sites at desensitized hα3ß4 with >2-fold higher affinity than that for hα4ß2. The electrophysiological, molecular docking, and in silico mutation results indicate that (±)-citalopram competitively inhibits rα9α10 AChRs (7.5 ± 0.9) in a voltage-independent manner by interacting mainly with orthosteric sites, whereas it inhibits a homogeneous population of α3ß4* AChRs at MHb (VI) neurons (7.6 ± 1.0) in a voltage-dependent manner by interacting mainly with a luminal site located in the middle of the ion channel, overlapping the imipramine site, which suggests an ion channel blocking mechanism. In conclusion, (±)-citalopram inhibits α3ß4 and α9α10 AChRs with higher potency compared to other AChRs but by different mechanisms. (±)-Citalopram also inhibits habenular α3ß4*AChRs, supporting the notion that these receptors are important endogenous targets related to their anti-addictive activities.


Assuntos
Antidepressivos/farmacologia , Citalopram/farmacologia , Habenula/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Animais , Antidepressivos Tricíclicos/metabolismo , Ligação Competitiva/efeitos dos fármacos , Cálcio/metabolismo , Células HEK293 , Habenula/efeitos dos fármacos , Humanos , Imipramina/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Receptores Nicotínicos/metabolismo , Xenopus
4.
J Nat Prod ; 82(7): 1953-1960, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31276409

RESUMO

The alkaloids aristoteline (1), aristoquinoline (2), and aristone (3) were purified from the leaves of the Maqui tree Aristotelia chilensis and chemically characterized by NMR spectroscopy. The pharmacological activity of these natural compounds was evaluated on human (h) α3ß4, α4ß2, and α7 nicotinic acetylcholine receptors (AChRs) by Ca2+ influx measurements. The results suggest that these alkaloids do not have agonistic, but inhibitory, activity on each receptor subtype. The obtained IC50 values indicate the following receptor selectivity: hα3ß4 > hα4ß2 ≫ hα7. In the particular case of hα3ß4 AChRs, 1 (0.40 ± 0.20 µM) and 2 (0.96 ± 0.38 µM) show higher potencies compared with 3 (167 ± 3 µM). Molecular docking and structure-activity relationship results indicate that ligand lipophilicity is important for the interaction with the luminal site located close to the cytoplasmic side of the hα3ß4 ion channel between positions -2' and -4'. Compound 1 could be used as a molecular scaffold for the development of more potent noncompetitive inhibitors with higher selectivity for the hα3ß4 AChR that could serve for novel addiction and depression therapies.


Assuntos
Alcaloides/farmacologia , Elaeocarpaceae/química , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Alcaloides/química , Alcaloides/isolamento & purificação , Humanos , Simulação de Acoplamento Molecular , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/isolamento & purificação , Relação Estrutura-Atividade
5.
ChemMedChem ; 14(13): 1238-1247, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-30957954

RESUMO

Histamine H3 receptor (H3R) inverse agonists that have been in clinical trials for the treatment of excessive sleep disorders, have been plagued with insomnia as a mechanism-based side effect. We focused on the identification of compounds that achieve high receptor occupancy within a short time, followed by rapid disengagement from the receptor, a target profile that could provide therapeutic benefits without the undesired side effect of insomnia. This article describes the optimization work that led to the discovery of 1-(1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)piperidin-4-yl 4-cyclobutylpiperazine-1-carboxylate (18 b, LML134).


Assuntos
Agonistas dos Receptores Histamínicos/uso terapêutico , Piperazina/química , Piperazinas/química , Receptores Histamínicos H3/metabolismo , Transtornos do Sono-Vigília/tratamento farmacológico , Animais , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Meia-Vida , Agonistas dos Receptores Histamínicos/química , Agonistas dos Receptores Histamínicos/farmacocinética , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Piperazina/farmacocinética , Piperazina/uso terapêutico , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Histamínicos H3/química , Relação Estrutura-Atividade
6.
Int J Biochem Cell Biol ; 100: 1-10, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704625

RESUMO

The activity of tricyclic antidepressants (TCAs) at α7 and α9α10 nicotinic acetylcholine receptors (AChRs) as well as at hippocampal α7-containing (i.e., α7*) AChRs is determined by using Ca2+ influx and electrophysiological recordings. To determine the inhibitory mechanisms, additional functional tests and molecular docking experiments are performed. The results established that TCAs (a) inhibit Ca2+ influx in GH3-α7 cells with the following potency (IC50 in µM) rank: amitriptyline (2.7 ±â€¯0.3) > doxepin (5.9 ±â€¯1.1) ∼ imipramine (6.6 ±â€¯1.0). Interestingly, imipramine inhibits hippocampal α7* AChRs (42.2 ±â€¯8.5 µM) in a noncompetitive and voltage-dependent manner, whereas it inhibits α9α10 AChRs (0.53 ±â€¯0.05 µM) in a competitive and voltage-independent manner, and (b) inhibit [3H]imipramine binding to resting α7 AChRs with the following affinity rank (IC50 in µM): imipramine (1.6 ±â€¯0.2) > amitriptyline (2.4 ±â€¯0.3) > doxepin (4.9 ±â€¯0.6), whereas imipramine's affinity was no significantly different to that for the desensitized state. The molecular docking and functional results support the notion that imipramine noncompetitively inhibits α7 AChRs by interacting with two overlapping luminal sites, whereas it competitively inhibits α9α10 AChRs by interacting with the orthosteric sites. Collectively our data indicate that TCAs inhibit α7, α9α10, and hippocampal α7* AChRs at clinically relevant concentrations and by different mechanisms of action.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Animais , Antidepressivos Tricíclicos/metabolismo , Sítios de Ligação , Linhagem Celular , Interações Medicamentosas , Imipramina/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Ratos , Receptores Nicotínicos/química , Termodinâmica , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
7.
J Nat Prod ; 81(4): 811-817, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29634269

RESUMO

The drimane sesquiterpenoids drimenin, cinnamolide, dendocarbin A, and polygodial were purified from the Canelo tree ( Drimys winteri) and chemically characterized by spectroscopic methods. The pharmacological activity of these natural compounds were determined on hα4ß2, hα3ß4, and hα7 nicotinic acetylcholine receptors (AChRs) by Ca2+ influx measurements. The results established that drimane sesquiterpenoids inhibit AChRs with the following selectivity: hα4ß2 > hα3ß4 > hα7. In the case of hα4ß2 AChRs, the following potency rank order was determined (IC50's in µM): drimenin (0.97 ± 0.35) > cinnamolide (1.57 ± 0.36) > polygodial (62.5 ± 19.9) ≫ dendocarbin A (no activity). To determine putative structural features underlying the differences in inhibitory potency at hα4ß2 AChRs, additional structure-activity relationship and molecular docking experiments were performed. The Ca2+ influx and structural results supported a noncompetitive mechanism of inhibition, where drimenin interacted with luminal and nonluminal (TMD-ß2 intrasubunit) sites. The structure-activity relationship results, i.e., the lower the ligand polarity, the higher the inhibitory potency, supported the nonluminal interaction. Ligand binding to both sites might inhibit the hα4ß2 AChR by a cooperative mechanism, as shown experimentally ( nH > 1). Drimenin could be used as a molecular scaffold for the development of more potent inhibitors with higher selectivity for the hα4ß2 AChR.


Assuntos
Receptores Nicotínicos/metabolismo , Sesquiterpenos/farmacologia , Terpenos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sítios de Ligação , Linhagem Celular , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Sesquiterpenos Policíclicos , Relação Estrutura-Atividade
8.
Pharmaceuticals (Basel) ; 10(4)2017 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-29232822

RESUMO

Atopic diseases are frequently co-morbid with autism spectrum disorders (ASD). Allergic responses are associated with an activation of mast cells, innate lymphoid cells, and Th2 cells. These cells produce type-2 cytokines (IL4 and IL13), which stimulate microglia and macrophages to adopt a phenotype referred to as 'alternative activation' or 'M2A'. M2A-polarized macrophages and microglia play a physiological role in tissue repair by secreting growth factors such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1. In ASD there is evidence for increased type-2 cytokines, microglia activation, M2A polarization, and increased levels of growth factors. In neurons, these growth factors drive a signal transduction pathway that leads to activation of the enzyme mammalian Target of Rapamycin (mTOR), and thereby to the inhibition of autophagy. Activation of mTOR is an effect that is also common to several of the genetic forms of autism. In the central nervous system, redundant synapses are removed via an autophagic process. Activation of mTOR would diminish the pruning of redundant synapses, which in the context of ASD is likely to be undesired. Based on this line of reasoning, atopic diseases like food allergy, eczema or asthma would represent risk factors for autism spectrum disorders.

9.
Int J Biochem Cell Biol ; 92: 202-209, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29042244

RESUMO

The inhibitory activity of coronaridine congeners on human (h) α4ß2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca2+ influx assays, whereas their effects on neurons in the ventral inferior (VI) aspect of the mouse medial habenula (MHb) are determined by patch-clamp recordings. The Ca2+ influx results clearly establish that coronaridine congeners inhibit hα3ß4 AChRs with higher selectivity compared to hα4ß2 and hα7 subtypes, and with the following potency sequence, for hα4ß2: (±)-18-methoxycoronaridine [(±)-18-MC]>(+)-catharanthine>(±)-18-methylaminocoronaridine [(±)-18-MAC] ∼ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine>(±)-18-MC>(±)-18-HC>(±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27±4µM) and (±)-18-MC (28±6µM) on MHb (VI) neurons was lower than that observed on hα3ß4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3ß4* AChRs. In addition, the interaction of bupropion with (-)-ibogaine sites on hα3ß4 AChRs is tested by [3H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3ß4 AChRs with 2-fold higher affinity than at resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3ß4 AChRs with higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. Coronaridine congeners also inhibit α3ß4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities.


Assuntos
Habenula/efeitos dos fármacos , Habenula/metabolismo , Ibogaína/análogos & derivados , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Ibogaína/química , Ibogaína/metabolismo , Ibogaína/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Antagonistas Nicotínicos/metabolismo , Conformação Proteica , Receptores Nicotínicos/química
10.
Neurosci Lett ; 660: 109-114, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28923481

RESUMO

Triggering receptor expressed in myeloid cells (TREM2) is a member of the immunoglobulin superfamily and is expressed in macrophages, dendritic cells, microglia, and osteoclasts. TREM2 plays a role in phagocytosis, regulates release of cytokine, contributes to microglia maintenance, and its ectodomain is shed from the cell surface. Here, the question was addressed at which position sheddases cleave TREM2 and what are the proteases involved in this process. Using both pharmacological and genetic approaches we report that the main protease contributing to the release of TREM2 ectodomain is ADAM17, (a disintegrin and metalloproteinase domain containing protein, also called TACE, TNFα converting enzyme) while ADAM10 plays a minor role. Complementary biochemical experiments reveal that cleavage occurs between histidine 157 and serine 158. Shedding is not altered for the R47H-mutated TREM2 protein that confers an increased risk for the development of Alzheimers disease. These findings reveal a link between shedding of TREM2 and its regulation during inflammatory conditions or chronic neurodegenerative disease like AD in which activity or expression of sheddases might be altered.


Assuntos
Proteína ADAM17/metabolismo , Histidina/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Humanos , Proteínas de Membrana/metabolismo
11.
Neurochem Int ; 100: 67-77, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27612850

RESUMO

The interaction of (±)-bupropion [(±)-BP] with the human (h) α4ß2 nicotinic acetylcholine receptor (AChR) was compared to that for its photoreactive analog (±)-2-(N-tert-butylamino)-3'-iodo-4'-azidopropiophenone [(±)-SADU-3-72]. Ca2+ influx results indicated that (±)-SADU-3-72 and (±)-BP inhibit hα4ß2 AChRs with practically the same potency. However, (±)-SADU-3-72 binds to the [3H]imipramine sites at resting and desensitized hα4ß2 AChRs with 3-fold higher affinity compared to that for (±)-BP, which is supported by molecular docking results. The docking results also indicate that each isomer of BP and SADU-3-72, in the protonated state, interacts with luminal and non-luminal sites. In the channel lumen, both ligands bind to two overlapping subsites, one that overlaps the imipramine site, and another much closer to the cytoplasmic side. The results suggest, for the first time, three differentiated non-luminal domains, including the transmembrane (TMD), extracellular (ECD), and ECD-TMD junction. In the ECD-TMD junction, BP and SADU-3-72 bind to overlapping sites. Interestingly, only SADU-3-72 binds to intrasubunit and intersubunit sites in the TMD, and to additional sites in the ECD. Our results are consistent with a model where BP and SADU-3-72 bind to overlapping sites in the luminal and ECD-TMD junctional domains of the hα4ß2, whereas only SADU-3-72 binds to additional non-luminal sites. The BP junctional site opens the door for additional inhibitory mechanisms. The pharmacological properties of (±)-SADU-3-72 showed in this work support further photolabeling studies to mapping the BP binding sites in the hα4ß2 AChR.


Assuntos
Azidas/farmacologia , Bupropiona/análogos & derivados , Bupropiona/farmacologia , Imipramina/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Ligantes , Simulação de Acoplamento Molecular/métodos , Conformação Proteica/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-27371157

RESUMO

INTRODUCTION: AQW051, an α7-nicotinic acetylcholine receptor partial agonist, enhanced cognitive function in rodent models of learning and memory. This study evaluated brain activation during performance of a working memory task (WMT) and an episodic memory task (EMT), and the effect of AQW051 on task-related brain activation and performance in subjects with schizophrenia. METHODS: This was a double-blind, randomized, placebo-controlled, multicenter, 2-period cross-over trial (NCT00825539) in participants with chronic, stable schizophrenia. Participants, stratified according to smoking status, were randomized (1:1:1:1:1:1) to 1 of 6 sequence groups that determined the study drug dose (AQW051 7.5mg, 50mg or 100mg) and order of administration versus placebo. The primary outcome was brain activation in a priori target regions of interest (ROIs) during performance of the WMT and EMT, measured using functional magnetic resonance imaging. The effect of AQW051 on task-related (EMT and WMT) brain activation and performance was also assessed, as were safety and tolerability. RESULTS: Overall, 60 of 68 enrolled participants completed the study (AQW051 then placebo: 7.5mg n=9; 50mg n=11; 100mg n=10. Placebo then AQW051: 7.5mg n=10; 50mg n=11; 100mg n=9). Significant task-related brain activation (5% significance level) was observed with placebo. During the WMT, a medium effect size was observed in the inferior prefrontal cortex with AQW051 100mg versus placebo (0.431; p=0.105). During the EMT encoding phase, a large effect size was observed in the anterior hippocampus (0.795; p=0.007) and a medium effect size in the posterior hippocampus (0.476; p=0.079) with AQW051 7.5mg. No other medium/large effect sizes were observed with any dose on either task. Effects on brain activation were generally not associated with changes in cognitive performance. AQW051 was well tolerated with an acceptable safety profile. CONCLUSIONS: Overall, no consistent effects of AQW051 on brain regions involved in the performance of a WMT or EMT were observed; however, this study presents a model for evaluating potential response to pharmacological interventions for cognitive impairment in schizophrenia.


Assuntos
Compostos Azabicíclicos/uso terapêutico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Agonistas Nicotínicos/uso terapêutico , Piridinas/uso terapêutico , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Adolescente , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Memória Episódica , Memória de Curto Prazo/efeitos dos fármacos , Pessoa de Meia-Idade , Oxigênio/sangue , Escalas de Graduação Psiquiátrica , Receptores Nicotínicos , Esquizofrenia/complicações , Adulto Jovem
13.
Int J Biochem Cell Biol ; 76: 19-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129924

RESUMO

The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and ß-amyloid (Aß) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50=26±6µM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2-4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aß42 in an Alzheimer's disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets.


Assuntos
Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolinesterase/genética , Regulação Alostérica/efeitos dos fármacos , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Humanos , Canais Iônicos de Abertura Ativada por Ligante/genética , Camundongos , Fragmentos de Peptídeos/genética , Ratos , Receptor Nicotínico de Acetilcolina alfa7/genética
14.
Pharmacol Ther ; 163: 82-93, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27101921

RESUMO

Macrophages and their counterparts in the central nervous system, the microglia, detect and subsequently clear microbial pathogens and injured tissue. These phagocytic cells alter and adapt their phenotype depending on their prime activity, i.e., whether they participate in acute defence against pathogenic organisms ('M1'-phenotype) or in clearing damaged tissues and performing repair activities ('M2'-phenotype). Stimulation of pattern recognition receptors by viruses (vaccines), bacterial membrane components (e.g., LPS), alcohol, or long-chain saturated fatty acids promotes M1-polarization. Vaccine or LPS administration to healthy human subjects can result in sickness symptoms and low mood. Alcohol abuse and abdominal obesity are recognized as risk factors for depression. In the M1-polarized form, microglia and macrophages generate reactive oxygen and nitrogen radicals to eradicate microbial pathogens. Inadvertently, also tetrahydrobiopterin (BH4) may become oxidized. This is an irreversible reaction that generates neopterin, a recognized biomarker for depression. BH4 is a critical cofactor for the synthesis of dopamine, noradrenaline, and serotonin, and its loss could explain some of the symptoms of depression. Based on these aspects, the suppression of M1-polarization would limit the inadvertent catabolism of BH4. In the current review, we evaluate the evidence that antidepressant treatments (monoamine reuptake inhibitors, PDE4 inhibitors, lithium, valproate, agomelatine, tianeptine, electroconvulsive shock, and vagus nerve stimulation) inhibit LPS-induced microglia/macrophage M1-polarization. Consequently, we propose that supplementation with BH4 could limit the reduction in central monoamine synthesis and might represent an effective treatment for depressed mood.


Assuntos
Antidepressivos/farmacologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Biomarcadores , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Depressão/tratamento farmacológico , Depressão/imunologia , Eletroconvulsoterapia/métodos , Humanos , Inflamação/imunologia , Macrófagos/metabolismo , Microglia/classificação , Fenótipo , Fatores de Risco , Transdução de Sinais , Estresse Psicológico/imunologia
15.
Mov Disord ; 31(7): 1049-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990766

RESUMO

BACKGROUND: This phase 2 randomized, double-blind, placebo-controlled study evaluated the efficacy and safety of the nicotinic acetylcholine receptor α7 agonist AQW051 in patients with Parkinson's disease and levodopa-induced dyskinesia. METHODS: Patients with idiopathic Parkinson's disease and moderate to severe levodopa-induced dyskinesia were randomized to AQW051 10 mg (n = 24), AQW051 50 mg (n = 24), or placebo (n = 23) once daily for 28 days. Coprimary end points were change in Modified Abnormal Involuntary Movement Scale and Unified Parkinson's Disease Rating Scale part III scores. Secondary outcomes included pharmacokinetics. RESULTS: In total, 67 patients completed the study. AQW051-treated patients experienced no significant improvements in Modified Abnormal Involuntary Movement Scale or Unified Parkinson's Disease Rating Scale part III scores by day 28. AQW051 was well tolerated; the most common adverse events were dyskinesia, fatigue, nausea, and falls. CONCLUSIONS: AQW051 did not significantly reduce dyskinesia or parkinsonian severity. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/farmacologia , Compostos Azabicíclicos/farmacologia , Dopaminérgicos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Avaliação de Resultados em Cuidados de Saúde , Doença de Parkinson/tratamento farmacológico , Piridinas/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Idoso , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/efeitos adversos , Método Duplo-Cego , Discinesia Induzida por Medicamentos/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piridinas/administração & dosagem , Piridinas/efeitos adversos
16.
Cell Mol Life Sci ; 73(13): 2511-30, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26979166

RESUMO

The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Sistema Imunitário/imunologia , Receptor Nicotínico de Acetilcolina alfa7/imunologia , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/patologia , Descoberta de Drogas , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/patologia , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/análise
17.
Neuropharmacology ; 107: 189-200, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26926428

RESUMO

Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators (PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been classified only on the basis of their macroscopic effects as type I, which only enhance agonist-induced currents, and type II, which also decrease desensitization and reactivate desensitized nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the effects on single-α7 channel currents of representative members of each type and of less characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and produce episodes of successive openings, thus indicating that both types affect α7 kinetics. Different PAM types show different sensitivity to temperature, suggesting different mechanisms of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all type I PAMs share the structural determinants of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to the ongoing development of therapeutic compounds.


Assuntos
Colinérgicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Linhagem Celular , Humanos , Isoxazóis/farmacologia , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutação , Técnicas de Patch-Clamp , Compostos de Fenilureia/farmacologia , Conformação Proteica , Ratos , Temperatura , Transfecção , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/genética
18.
Alzheimers Dement (N Y) ; 2(2): 99-109, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29067297

RESUMO

The Alzheimer's Association's Research roundtable met in April 2015 to explore the role of neuroinflammatory mechanisms in the progression of Alzheimer's disease (AD). The ability of innate immune cells, particularly microglia and astrocytes, to mediate neuroinflammation in AD has been implicated as a significant contributor to disease pathogenesis. Adaptive immunity, which plays an important role in responding to injury and some diseases of the central nervous system, may contribute to neuroinflammation in AD as well. Communication between the central and peripheral immune systems may also be important in AD. An increased understanding of the physiology of the innate immune system may aid the identification of new therapeutic targets or mechanisms. The development of predictive animal models and translatable neuroinflammation biomarkers for AD would also facilitate the advancement of novel treatments for innate immunity. Important challenges impeding the advancement of new therapeutic agents and strategies to overcome them were discussed.

19.
Neurochem Int ; 87: 110-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26116439

RESUMO

The current study compares the antidepressant-like effect elicited by nicotine between wild-type (ß4+/+) and knockout (ß4-/-) mice, and subsequently, the effect of 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a positive allosteric modulator of α7 nicotinic receptors, on the previously determined activity of nicotine. Mice from each sex were injected daily with nicotine base (0.2 mg/kg; s.c.) or co-administered with PAM-2 (1.0 mg/kg; i.p.) for 3 weeks. Forced swim tests were performed to determine the acute (day 1), subchronic (day 7), and chronic (days 14 and 21) effects of the drugs, as well as their residual effects after treatment cessation (days 28 and 35). Our results indicate that nicotine mediates antidepressant-like activity after acute, subchronic, and chronic treatments in ß4+/+, but not ß4-/-, mice, and that these effects are not mediated by unspecific locomotor stimulation. Nicotine co-administered with PAM-2 produces antidepressant-like activity in both ß4+/+ and ß4-/- mice, except after the acute treatment of ß4-/- mice, and decreases locomotor activity. This suggests that although the ß4 subunit regulates the antidepressant-like activity of nicotine it does not affect the activity elicited by PAM-2 when is co-administered with nicotine. The residual antidepressant-like activity of PAM-2 + nicotine was observed only in female mice, suggesting gender-specific differences. Our findings clearly indicate that ß4-containing nAChRs play an important role in the antidepressant-like activity elicited by nicotine but they are not essential for the modulatory activity of PAM-2. In fact, PAM-2 inhibits α4ß4 and α3ß4 AChRs at higher concentration ranges compared to that for the PAM activity previously found at the α7 AChR.


Assuntos
Acrilamidas/farmacologia , Antidepressivos/farmacologia , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nicotínicos/química
20.
Int J Biochem Cell Biol ; 65: 81-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022277

RESUMO

To characterize the interaction of coronaridine congeners with human (h) α3ß4 nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The Ca(2+) influx results established that coronaridine congeners noncompetitively inhibit hα3ß4 AChRs with the following potency (IC50's in µM) sequence: (-)-ibogamine (0.62±0.23)∼(+)-catharanthine (0.68±0.10)>(-)-ibogaine (0.95±0.10)>(±)-18-methoxycoronaridine [(±)-18-MC] (1.47±0.21)>(-)-voacangine (2.28±0.33)>(±)-18-methylaminocoronaridine (2.62±0.57 µM)∼(±)-18-hydroxycoronaridine (2.81±0.54)>(-)-noribogaine (6.82±0.78). A good linear correlation (r(2)=0.771) between the calculated IC50 values and their polar surface area was found, suggesting that this is an important structural feature for its activity. The radioligand competition results indicate that (±)-18-MC and (-)-ibogaine partially inhibit [(3)H]imipramine binding by an allosteric mechanism. Molecular docking, molecular dynamics, and in silico mutation results suggest that protonated (-)-18-MC binds to luminal [i.e., ß4-Phe255 (phenylalanine/valine ring; position 13'), and α3-Leu250 and ß4-Leu251 (leucine ring; position 9')], non-luminal, and intersubunit sites. The pharmacophore model suggests that nitrogens from the ibogamine core as well as methylamino, hydroxyl, and methoxyl moieties at position 18 form hydrogen bonds. Collectively our data indicate that coronaridine congeners inhibit hα3ß4 AChRs by blocking the ion channel's lumen and probably by additional negative allosteric mechanisms by interacting with a series of non-luminal sites.


Assuntos
Ibogaína/análogos & derivados , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Regulação Alostérica , Ligação Competitiva , Células HEK293 , Humanos , Ibogaína/química , Ibogaína/metabolismo , Ibogaína/farmacologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/metabolismo , Ensaio Radioligante , Receptores Nicotínicos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA