RESUMO
Shape and size of the nasopharyngeal airway is controlled by muscles innervated facial, glossopharyngeal, vagal, and hypoglossal cranial nerves. Contrary to brainstem networks that drive facial, vagal and hypoglossal nerve activities (FNA, VNA, HNA) the discharge patterns and origins of glossopharyngeal nerve activity (GPNA) remain poorly investigated. Here, an in situ perfused brainstem preparation (n=19) was used for recordings of GPNA in relation to phrenic (PNA), FNA, VNA and HNA. Brainstem transections were performed (n=10/19) to explore the role of pontomedullary synaptic interactions in generating GPNA. GPNA generally mirrors FNA and HNA discharge patterns and displays pre-inspiratory activity relative to the PNA, followed by robust inspiratory discharge in coincidence with PNA. Postinspiratory (early expiratory) discharge was, contrary to VNA, generally absent in FNA, GPNA or HNA. As described previously FNA and HNA discharge was virtually eliminated after pontomedullary transection while an apneustic inspiratory motor discharge was maintained in PNA, VNA and GPNA. After brainstem transection GPNA displayed an increased tonic activity starting during mid-expiration and thus developed prolonged pre-inspiratory activity compared to control. In conclusion respiratory GPNA reflects FNA and HNA which implies similar function in controlling upper airway patency during breathing. That GPNA preserved its pre-inspiratory/inspiratory discharge pattern in relation PNA after pontomedullary transection suggest that GPNA premotor circuits may have a different anatomical distribution compared HNA and FNA and thus may therefore hold a unique role in preserving airway patency.
Assuntos
Nervo Glossofaríngeo , Animais , Nervo Glossofaríngeo/fisiologia , Bulbo/fisiologia , Ponte/fisiologia , Nervo Frênico/fisiologia , Respiração , Nervo Hipoglosso/fisiologia , Masculino , Potenciais de Ação/fisiologiaRESUMO
Study Design: Technical note. Objective: The lower nasal architecture is dependent on caudal septal integrity. Deviations of the caudal septum can compromise nasal airflow. The presence of anterior nasal spine deviations contributes to septal and medial crural shifting with ipsilateral encroachment. It is essential to identify nasal spine deviation during surgery in order to reconstruct the septum in a midline position at its base. This allows an appropriate management plan that creates a better functional and aesthetically pleasing outcome. A stable midline anterior nasal spine is warranted to support the newly reconstructed straight caudal strut, which can be effectively corrected by anterior septal reconstruction. Methods: The proposed method intends to combine anterior nasal spine centralization with correcting caudal septal deviation and nasal obstruction through a modified extracorporeal septoplasty technique. We describe a novel technique to centralize the deviated anterior nasal spine using the piezoelectric device by performing a contralateral adjacent ostectomy and en-bloc relocation and fixation of the anterior nasal spine with microplates and screws. Results: This surgical approach creates a stable caudal septum and a centrally positioned anterior nasal spine, which improves nasal airflow and ensures a stable repair. Conclusion: Sliding spine relocation surgery with anterior septal reconstruction repositions a deviated anterior nasal spine and corrects caudal septum deviation, that can impair the nasal airway.
RESUMO
STUDY OBJECTIVES: The major goal of the study was to determine whether changes in tongue morphology under selective hypoglossal nerve therapy for obstructive sleep apnea were associated with alterations in airway patency during sleep when specific portions of the hypoglossal nerve were stimulated. METHODS: This case series was conducted at the Johns Hopkins Sleep Disorders Center at Johns Hopkins Bayview Medical Center. Twelve patients with apnea implanted with a multichannel targeted hypoglossal nerve-stimulating system underwent midsagittal ultrasound tongue imaging during wakefulness. Changes in tongue shape were characterized by measuring the vertical height and polar dimensions between tongue surface and genioglossi origin in the mandible. Changes in patency were characterized by comparing airflow responses between stimulated and adjacent unstimulated breaths during non-rapid eye movement sleep. RESULTS: Two distinct morphologic responses were observed. Anterior tongue base and hyoid-bone movement (5.4 [0.4] to 4.1 [1.0] cm (median and [interquartile range]) with concomitant increases in tongue height (5.0 [0.9] to 5.6 [0.7] cm) were associated with decreases in airflow during stimulation. In contrast, comparable anterior hyoid movement (tongue protrusion from 5.8 [0.5] to 4.5 [0.9] cm) without significant increases in height (5.2 [1.6] to 4.6 [0.8] cm) were associated with marked increases in airflow during sleep. CONCLUSIONS: Tongue protrusion with preservation of tongue shape predicted increases in patency, whereas anterior movement with concomitant increases in height were associated with decreased pharyngeal patency. These findings suggest that pharyngeal patency can be best stabilized by stimulating lingual muscles that maintain tongue shape while protruding the tongue, thereby preventing it from prolapsing posteriorly during sleep. CITATION: Fleury Curado T, Pham L, Otvos T, et al. Changes in tongue morphology predict responses in pharyngeal patency to selective hypoglossal nerve stimulation. J Clin Sleep Med. 2023;19(5):947-955.
Assuntos
Terapia por Estimulação Elétrica , Apneia Obstrutiva do Sono , Humanos , Nervo Hipoglosso/fisiologia , Língua , Apneia Obstrutiva do Sono/terapia , Faringe , Sono/fisiologia , Terapia por Estimulação Elétrica/métodosRESUMO
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway due to the loss of upper airway muscle tone during sleep. OSA is highly prevalent, especially in obesity. There is no pharmacotherapy for OSA. Previous studies have demonstrated the role of leptin, an adipose-tissue-produced hormone, as a potent respiratory stimulant. Leptin signaling via a long functional isoform of leptin receptor, LEPRb, in the nucleus of the solitary tract (NTS), has been implicated in control of breathing. We hypothesized that leptin acts on LEPRb positive neurons in the NTS to increase ventilation and maintain upper airway patency during sleep in obese mice. We expressed designer receptors exclusively activated by designer drugs (DREADD) selectively in the LEPRb positive neurons of the NTS of Leprb-Cre-GFP mice with diet-induced obesity (DIO) and examined the effect of DREADD ligand, J60, on tongue muscle activity and breathing during sleep. J60 was a potent activator of LEPRb positive NTS neurons, but did not stimulate breathing or upper airway muscles during NREM and REM sleep. We conclude that, in DIO mice, the stimulating effects of leptin on breathing during sleep are independent of LEPRb signaling in the NTS.
Assuntos
Neurônios/metabolismo , Receptores de Droga/metabolismo , Receptores para Leptina/metabolismo , Síndromes da Apneia do Sono/fisiopatologia , Núcleo Solitário/citologia , Animais , Eletromiografia , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Obesidade/etiologia , Obesidade/fisiopatologia , Sono REM , Núcleo Solitário/metabolismoRESUMO
Dysfunction and/or reduced activity in the tongue muscles contributes to conditions such as dysphagia, dysarthria, and sleep disordered breathing. Current treatments are often inadequate, and the tongue is a readily accessible target for therapeutic gene delivery. In this regard, gene therapy specifically targeting the tongue motor system offers two general strategies for treating lingual disorders. First, correcting tongue myofiber and/or hypoglossal (XII) motoneuron pathology in genetic neuromuscular disorders may be readily achieved by intralingual delivery of viral vectors. The retrograde movement of viral vectors such as adeno-associated virus (AAV) enables targeted distribution to XII motoneurons via intralingual viral delivery. Second, conditions with impaired or reduced tongue muscle activation can potentially be treated using viral-driven chemo- or optogenetic approaches to activate or inhibit XII motoneurons and/or tongue myofibers. Further considerations that are highly relevant to lingual gene therapy include (1) the diversity of the motoneurons which control the tongue, (2) the patterns of XII nerve branching, and (3) the complexity of tongue muscle anatomy and biomechanics. Preclinical studies show considerable promise for lingual directed gene therapy in neuromuscular disease, but the potential of such approaches is largely untapped.
Assuntos
Técnicas de Transferência de Genes , Nervo Hipoglosso , Dependovirus/genética , Terapia Genética , Neurônios MotoresRESUMO
STUDY OBJECTIVES: Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH). We hypothesized that leptin receptor LepRb-deficient db/db mice have obesity hypoventilation and that restoration of leptin signaling in the DMH will increase ventilation during sleep in these animals. METHODS: We measured arterial blood gas in unanesthetized awake db/db mice. We subsequently infected these animals with Ad-LepRb or control Ad-mCherry virus into the DMH and measured ventilation during sleep as well as CO2 production after intracerebroventricular (ICV) infusions of phosphate-buffered saline or leptin. RESULTS: Awake db/db mice had elevated CO2 levels in the arterial blood. Ad-LepRb infection resulted in LepRb expression in the DMH neurons in a similar fashion to wildtype mice. In LepRb-DMH db/db mice, ICV leptin shortened REM sleep and increased inspiratory flow, tidal volume, and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in these animals. CONCLUSION: Leptin stimulates breathing and treats obesity hypoventilation acting on LepRb-positive neurons in the DMH.
Assuntos
Leptina , Receptores para Leptina , Animais , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Obesos , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , SonoRESUMO
Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.
Assuntos
Drogas Desenhadas/uso terapêutico , Nervo Hipoglosso/efeitos dos fármacos , Músculos Faríngeos/efeitos dos fármacos , Receptores de Droga/efeitos dos fármacos , Respiração/efeitos dos fármacos , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , CamundongosRESUMO
Respiratory depression is the main cause of morbidity and mortality associated with opioids. Obesity increases opioid-related mortality, which is mostly related to comorbid obstructive sleep apnea. Naloxone, a µ-opioid receptor blocker, is an effective antidote, but it reverses analgesia. Like humans with obesity, mice with diet-induced obesity hypoventilate during sleep and develop obstructive sleep apnea, which can be treated with intranasal leptin. We hypothesized that intranasal leptin reverses opioid-induced sleep-disordered breathing in obese mice without decreasing analgesia. To test this hypothesis, mice with diet-induced obesity were treated with morphine at 10 mg/kg subcutaneously and with leptin or placebo intranasally. Sleep and breathing were recorded by barometric plethysmography, and pain sensitivity was measured by the tail-flick test. Excitatory postsynaptic currents were recorded in vitro from hypoglossal motor neurons after the application of the µ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin and leptin. Morphine dramatically increased the frequency of apneas and greatly increased the severity of hypoventilation and obstructive sleep apnea. Leptin decreased the frequency of apneas, improved obstructive sleep apnea, and completely reversed hypoventilation, whereas morphine analgesia was enhanced. Our in vitro studies demonstrated that [D-Ala2, N-MePhe4, Gly-ol]-enkephalin reduced the frequency of excitatory postsynaptic currents in hypoglossal motoneurons and that application of leptin restored excitatory synaptic neurotransmission. Our findings suggest that intranasal leptin may prevent opioid respiratory depression during sleep in patients with obesity receiving opioids without reducing analgesia.
Assuntos
Analgésicos Opioides/efeitos adversos , Leptina/administração & dosagem , Respiração/efeitos dos fármacos , Síndromes da Apneia do Sono/induzido quimicamente , Síndromes da Apneia do Sono/prevenção & controle , Sono/efeitos dos fármacos , Administração Intranasal/métodos , Analgesia/métodos , Animais , Modelos Animais de Doenças , Encefalinas/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Morfina/farmacologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Receptores Opioides mu/metabolismo , Síndromes da Apneia do Sono/metabolismo , Transmissão Sináptica/efeitos dos fármacosRESUMO
Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive sleep-related losses of upper airway patency that occur most frequently during rapid eye movement (REM) sleep. Hypoglossal motoneurons play a key role in regulating upper airway muscle tone and patency during sleep. REM sleep activates GABA and glycine neurons in the ventral medulla (VM) to induce cortical desynchronization and skeletal muscle atonia during REM sleep; however, the role of this brain region in modulating hypoglossal motor activity is unknown. We combined optogenetic and chemogenetic approaches with in-vitro and in-vivo electrophysiology, respectfully, in GAD2-Cre mice of both sexes to test the hypothesis that VM GABA/glycine neurons control the activity of hypoglossal motoneurons and tongue muscles. Here, we show that there is a pathway originating from GABA/glycine neurons in the VM that monosynaptically inhibits brainstem hypoglossal motoneurons innervating both tongue protruder genioglossus (GMNs) and retractor (RMNs) muscles. Optogenetic activation of ChR2-expressing fibers induced a greater postsynaptic inhibition in RMNs than in GMNs. In-vivo chemogenetic activation of VM GABA/glycine neurons produced an inhibitory effect on tongue electromyographic (EMG) activity, decreasing both the amplitude and duration of inspiratory-related EMG bursts without any change in respiratory rate. These results indicate that activation of GABA/glycine neurons from the VM inhibits tongue muscles via a direct pathway to both GMNs and RMNs. This inhibition may play a role in REM sleep associated upper airway obstructions that occur in patients with OSA.
Assuntos
Glicina , Nervo Hipoglosso , Animais , Feminino , Humanos , Masculino , Camundongos , Neurônios Motores , Sono REM , Ácido gama-AminobutíricoRESUMO
Obstructive sleep apnea (OSA) is a highly prevalent disease characterized by recurrent closure of the upper airway during sleep. It has a complex pathophysiology involving four main phenotypes. An abnormal upper airway anatomy is the key factor that predisposes to sleep-related collapse of the pharynx, but it may not be sufficient for OSA development. Non-anatomical traits, including (1) a compromised neuromuscular response of the upper airway to obstruction, (2) an unstable respiratory control (high loop gain), and (3) a low arousal threshold, predict the development of OSA in association with anatomical abnormalities. Current therapies for OSA, such as continuous positive airway pressure (CPAP) and oral appliances, have poor adherence or variable efficacy among patients. The search for novel therapeutic approaches for OSA, including pharmacological agents, has been pursued over the past years. New insights into OSA pharmacotherapy have been provided by preclinical studies, which highlight the importance of appropriate use of animal models of OSA, their applicability, and limitations. In the present review, we discuss potential pharmacological targets for OSA discovered using animal models.
RESUMO
RATIONALE: Leptin treats upper airway obstruction and alveolar hypoventilation in leptin-deficient ob/ob mice. However, obese humans and mice with diet-induced obesity (DIO) are resistant to leptin because of poor permeability of the blood-brain barrier. We propose that intranasal leptin will bypass leptin resistance and treat sleep-disordered breathing in obesity. OBJECTIVES: To assess if intranasal leptin can treat obesity hypoventilation and upper airway obstruction during sleep in mice with DIO. METHODS: Male C57BL/6J mice were fed with a high-fat diet for 16 weeks. A single dose of leptin (0.4 mg/kg) or BSA (vehicle) were administered intranasally or intraperitoneally, followed by either sleep studies (n = 10) or energy expenditure measurements (n = 10). A subset of mice was treated with leptin daily for 14 days for metabolic outcomes (n = 20). In a separate experiment, retrograde viral tracers were used to examine connections between leptin receptors and respiratory motoneurons. MEASUREMENTS AND MAIN RESULTS: Acute intranasal, but not intraperitoneal, leptin decreased the number of oxygen desaturation events in REM sleep, and increased ventilation in non-REM and REM sleep, independently of metabolic effects. Chronic intranasal leptin decreased food intake and body weight, whereas intraperitoneal leptin had no effect. Intranasal leptin induced signal transducer and activator of transcription 3 phosphorylation in hypothalamic and medullary centers, whereas intraperitoneal leptin had no effect. Leptin receptor-positive cells were synaptically connected to respiratory motoneurons. CONCLUSIONS: In mice with DIO, intranasal leptin bypassed leptin resistance and significantly attenuated sleep-disordered breathing independently of body weight.
Assuntos
Leptina/metabolismo , Absorção Nasal/fisiologia , Obesidade/complicações , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/fisiopatologia , Sono/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos AnimaisRESUMO
Obstructive Sleep Apnea (OSA) is a prevalent condition and a major cause of morbidity and mortality in Western Society. The loss of motor input to the tongue and specifically to the genioglossus muscle during sleep is associated with pharyngeal collapsibility and the development of OSA. We applied a novel chemogenetic method to develop a mouse model of sleep disordered breathing Our goal was to reversibly silence neuromotor input to the genioglossal muscle using an adeno-associated viral vector carrying inhibitory designer receptors exclusively activated by designer drugs AAV5-hM4Di-mCherry (DREADD), which was delivered bilaterally to the hypoglossal nucleus in fifteen C57BL/6J mice. In the in vivo experiment, 4 weeks after the viral administration mice were injected with a DREADD ligand clozapine-N-oxide (CNO, i.p., 1mg/kg) or saline followed by a sleep study; a week later treatments were alternated and a second sleep study was performed. Inspiratory flow limitation was recognized by the presence of a plateau in mid-respiratory flow; oxyhemoglobin desaturations were defined as desaturations >4% from baseline. In the in vitro electrophysiology experiment, four males and three females of 5 days of age were used. Sixteen-nineteen days after DREADD injection brain slices of medulla were prepared and individual hypoglossal motoneurons were recorded before and after CNO application. Positive mCherry staining was detected in the hypoglossal nucleus in all mice confirming successful targeting. In sleep studies, CNO markedly increased the frequency of flow limitation n NREM sleep (from 1.9 ± 1.3% after vehicle injection to 14.2 ± 3.4% after CNO, p < 0.05) and REM sleep (from 22.3% ± 4.1% to 30.9 ± 4.6%, respectively, p < 0.05) compared to saline treatment, but there was no significant oxyhemoglobin desaturation or sleep fragmentation. Electrophysiology recording in brain slices showed that CNO inhibited firing frequency of DREADD-containing hypoglossal motoneurons. We conclude that chemogenetic approach allows to silence hypoglossal motoneurons in mice, which leads to sleep disordered breathing manifested by inspiratory flow limitation during NREM and REM sleep without oxyhemoglobin desaturation or sleep fragmentation. Other co-morbid factors, such as compromised upper airway anatomy, may be needed to achieve recurrent pharyngeal obstruction observed in OSA.
RESUMO
Over the past 30 years, hypoglossal nerve stimulation has moved through a development pathway to become a viable treatment modality for patients with OSA. Initial pilot studies in animals and humans laid the conceptual foundation for this approach, leading to the development of fully implantable stimulating systems for therapeutic purposes. These devices were then shown to be both safe and efficacious in feasibility studies. One such closed-loop stimulating device was found to be effective in treating a limited spectrum of apneic patients and is currently approved by the US Food and Drug Administration for this purpose. Another open-loop stimulating system is currently being rigorously tested in a pivotal trial. Collectively, clinical trials of hypoglossal nerve stimulating systems have yielded important insights that can help optimize therapeutic responses to hypoglossal nerve stimulation. These insights include specific patient selection criteria and methods for delivering stimulation to specific portions of the hypoglossal nerve and/or genioglossus muscle. New approaches for activating efferent and afferent motor pathways are currently in early-stage laboratory development and hold some long-term promise as a novel therapy.
Assuntos
Terapia por Estimulação Elétrica , Nervo Hipoglosso , Apneia Obstrutiva do Sono/terapia , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Humanos , Seleção de Pacientes , Resultado do TratamentoRESUMO
Obesity leads to sleep-disordered breathing (SDB) manifested by recurrent upper airway obstructions termed obstructive sleep apnea (OSA) and carbon dioxide retention due to hypoventilation. The objective of this work was to characterize breathing during sleep in C57BL6/J mice with diet-induced obesity (DIO). Arterial blood gas was measured in nine obese and nine lean mice during wakefulness. Nine male mice with DIO and six lean male C57BL/6J mice were head mounted with electroencephalogram (EEG) and electromyogram (EMG) electrodes. Sleep recordings were performed in the whole body plethysmography chamber; upper airway obstruction was characterized by the presence of inspiratory flow limitation in which airflow plateaus with increases in inspiratory effort. Obese mice showed significantly lower pH and higher partial pressure of arterial CO2 (PaCO2) in arterial blood gas compared to lean mice, 7.35 ± 0.04 versus 7.46 ± 0.06 (p < 0.001) and 38 ± 8 mm Hg versus 30 ± 5 mm Hg (p < 0.001). Obese mice had similar levels of minute ventilation to lean mice during sleep and wakefulness, despite higher body weight and temperature, indicating an increase in the metabolic rate and hypoventilation. Obese mice also showed baseline hypoxemia with decreased mean oxyhemoglobin saturation across sleep/wake states. Obese mice had a higher prevalence of flow-limited breathing compared to lean mice during sleep. However, the oxygen desaturation index in lean and obese mice did not differ. We conclude that DIO in mice leads to hypoventilation. Obesity also increases the frequency of inspiratory limited breaths, but it does not translate into progression of OSA.
Assuntos
Hipercapnia/fisiopatologia , Hipoventilação/fisiopatologia , Obesidade/fisiopatologia , Respiração , Apneia Obstrutiva do Sono/fisiopatologia , Sono/fisiologia , Animais , Dieta , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Oxigênio/sangue , Polissonografia , Prevalência , VigíliaRESUMO
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway obstruction during sleep. OSA leads to high cardiovascular morbidity and mortality. The pathogenesis of OSA has been linked to a defect in neuromuscular control of the pharynx. There is no effective pharmacotherapy for OSA. The objective of this study was to determine whether upper airway patency can be improved using chemogenetic approach by deploying designer receptors exclusively activated by designer drug (DREADD) in the hypoglossal motorneurons. DREADD (rAAV5-hSyn-hM3(Gq)-mCherry) and control virus (rAAV5-hSyn-EGFP) were stereotactically administered to the hypoglossal nucleus of C57BL/6J mice. In 6-8 weeks genioglossus EMG and dynamic MRI of the upper airway were performed before and after administration of the DREADD ligand clozapine-N-oxide (CNO) or vehicle (saline). In DREADD-treated mice, CNO activated the genioglossus muscle and markedly dilated the pharynx, whereas saline had no effect. Control virus treated mice showed no effect of CNO. Our results suggest that chemogenetic approach can be considered as a treatment option for OSA and other motorneuron disorders.