Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 297, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607564

RESUMO

Glycosidic osmolytes are widespread natural compounds that protect microorganisms and their macromolecules from the deleterious effects of various environmental stresses. Their protective properties have attracted considerable interest for industrial applications, especially as active ingredients in cosmetics and healthcare products. In that regard, the osmolyte glucosylglycerate is somewhat overlooked. Glucosylglycerate is typically accumulated by certain organisms when they are exposed to high salinity and nitrogen starvation, and its potent stabilizing effects have been demonstrated in vitro. However, the applications of this osmolyte have not been thoroughly explored due to the lack of a cost-efficient production process. Here, we present an overview of the progress that has been made in developing promising strategies for the synthesis of glucosylglycerate and its precursor glycerate, and discuss the remaining challenges. KEY POINTS: • Bacterial milking could be explored for fermentative production of glucosylglycerate • Glycoside phosphorylases of GH13_18 represent attractive alternatives for biocatalytic production • Conversion of glycerol with alditol oxidase is a promising strategy for generating the precursor glycerate.


Assuntos
Glicosídeos , Compostos Orgânicos , Biocatálise , Fermentação , Glicerol
2.
J Agric Food Chem ; 72(18): 10497-10505, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38659290

RESUMO

Despite their broad application potential, the widespread use of ß-1,3-glucans has been hampered by the high cost and heterogeneity associated with current production methods. To address this challenge, scalable and economically viable processes are needed for the production of ß-1,3-glucans with tailorable molecular mass distributions. Glycoside phosphorylases have shown to be promising catalysts for the bottom-up synthesis of ß-1,3-(oligo)glucans since they combine strict regioselectivity with a cheap donor substrate (i.e., α-glucose 1-phosphate). However, the need for an expensive priming substrate (e.g., laminaribiose) and the tendency to produce shorter oligosaccharides still form major bottlenecks. Here, we report the discovery and application of a thermostable ß-1,3-oligoglucan phosphorylase originating from Anaerolinea thermophila (AtßOGP). This enzyme combines a superior catalytic efficiency toward glucose as a priming substrate, high thermostability, and the ability to synthesize high molecular mass ß-1,3-glucans up to DP 75. Coupling of AtßOGP with a thermostable variant of Bifidobacterium adolescentis sucrose phosphorylase enabled the efficient production of tailorable ß-1,3-(oligo)glucans from sucrose, with a near-complete conversion of >99 mol %. This cost-efficient process for the conversion of renewable bulk sugar into ß-1,3-(oligo)glucans should facilitate the widespread application of these versatile functional fibers across various industries.


Assuntos
Proteínas de Bactérias , Estabilidade Enzimática , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , beta-Glucanas/química , beta-Glucanas/metabolismo , Bifidobacterium adolescentis/enzimologia , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/química , Bifidobacterium adolescentis/metabolismo , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Especificidade por Substrato , Fosforilases/metabolismo , Fosforilases/química , Fosforilases/genética , Clostridiales/enzimologia , Clostridiales/genética , Clostridiales/química , Biocatálise , Temperatura Alta
3.
ACS Catal ; 14(5): 3103-3114, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449530

RESUMO

The reconstruction of ancestral sequences can offer a glimpse into the fascinating process of molecular evolution by exposing the adaptive pathways that shape the proteins found in nature today. Here, we track the evolution of the carbohydrate-active enzymes responsible for the synthesis and turnover of mannogen, a critical carbohydrate reserve in Leishmania parasites. Biochemical characterization of resurrected enzymes demonstrated that mannoside phosphorylase activity emerged in an ancestral bacterial mannosyltransferase, and later disappeared in the process of horizontal gene transfer and gene duplication in Leishmania. By shuffling through plausible historical sequence space in an ancestral mannosyltransferase, we found that mannoside phosphorylase activity could be toggled on through various combinations of mutations at positions outside of the active site. Molecular dynamics simulations showed that such mutations can affect loop rigidity and shield the active site from water molecules that disrupt key interactions, allowing α-mannose 1-phosphate to adopt a catalytically productive conformation. These findings highlight the importance of subtle distal mutations in protein evolution and suggest that the vast collection of natural glycosyltransferases may be a promising source of engineering templates for the design of tailored phosphorylases.

4.
Appl Microbiol Biotechnol ; 108(1): 55, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175244

RESUMO

Osmolytes are produced by various microorganisms as a defense mechanism to protect cells and macromolecules from damage caused by external stresses in harsh environments. Due to their useful stabilizing properties, these molecules are applied as active ingredients in a wide range of cosmetics and healthcare products. The metabolic pathways and biocatalytic syntheses of glycosidic osmolytes such as 2-O-α-D-glucosyl-D-glycerate often involve the action of a glycoside phosphorylase. Here, we report the discovery of a glucosylglycerate phosphorylase from carbohydrate-active enzyme family GH13 that is also active on sucrose, which contrasts the strict specificity of known glucosylglycerate phosphorylases that can only use α-D-glucose 1-phosphate as glycosyl donor in transglycosylation reactions. The novel enzyme can be distinguished from other phosphorylases from the same family by the presence of an atypical conserved sequence motif at specificity-determining positions in the active site. The promiscuity of the sucrose-active glucosylglycerate phosphorylase can be exploited for the high-yielding and rapid synthesis of 2-O-α-D-glucosyl-D-glycerate from sucrose and D-glycerate. KEY POINTS: • A Xylanimonas protaetiae glycoside phosphorylase can use both d-glycerate and fructose as glucosyl acceptor with high catalytic efficiency • Biocatalytic synthesis of the osmolyte 2-O-α-d-glucosyl-d-glycerate • Positions in the active site of GH13 phosphorylases act as convenient specificity fingerprints.


Assuntos
Glicosídeos , Compostos Orgânicos , Fosforilases/genética , Biocatálise , Sacarose
5.
Curr Opin Biotechnol ; 78: 102804, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36156353

RESUMO

The commercial value of specialty carbohydrates and glycosylated compounds has sparked considerable interest in the synthetic potential of carbohydrate-active enzymes (CAZymes). Protein engineering methods have proven to be highly successful in expanding the range of glycosylation reactions that these enzymes can perform efficiently and cost-effectively. The past few years have witnessed meaningful progress in this area, largely due to a sharper focus on the understanding of structure-function relationships and mechanistic intricacies. Here, we summarize recent studies that demonstrate how protein engineers have become much better at traversing the fitness landscape of CAZymes through mutational bridges that connect the different activity types.


Assuntos
Carboidratos , Proteínas , Glicosilação , Enzimas/genética
6.
Biotechnol Adv ; 60: 108010, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35738511

RESUMO

Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations.


Assuntos
Mutação INDEL , Proteínas , Aminoácidos , Evolução Molecular , Mutação , Proteínas/genética
7.
Chem Commun (Camb) ; 58(42): 6239-6242, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35510683

RESUMO

Non-selective inhibition of different histone deacetylase enzymes by hydroxamic acid-based drugs causes severe side effects when used as a (long-term) cancer treatment. In this work, we searched for a potent zinc-binding group able to replace the contested hydroxamic acid by employing a lean inhibitor strategy. This instructed the synthesis of a set of HDAC6-selective inhibitors containing the more desirable mercaptoacetamide moiety. Biological evaluation of these new compounds showed an IC50 in the nanomolar range, dose-dependent HDAC6 inhibition in MM1.S cells and improved genotoxicity results, rendering these new inhibitors valuable hits for applications even beyond oncology.


Assuntos
Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia
8.
Molecules ; 26(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684901

RESUMO

The Glycoside Hydrolase Family 65 (GH65) is an enzyme family of inverting α-glucoside phosphorylases and hydrolases that currently contains 10 characterized enzyme specificities. However, its sequence diversity has never been studied in detail. Here, an in-silico analysis of correlated mutations was performed, revealing specificity-determining positions that facilitate annotation of the family's phylogenetic tree. By searching these positions for amino acid motifs that do not match those found in previously characterized enzymes from GH65, several clades that may harbor new functions could be identified. Three enzymes from across these regions were expressed in E. coli and their substrate profile was mapped. One of those enzymes, originating from the bacterium Mucilaginibacter mallensis, was found to hydrolyze kojibiose and α-1,2-oligoglucans with high specificity. We propose kojibiose glucohydrolase as the systematic name and kojibiose hydrolase or kojibiase as the short name for this new enzyme. This work illustrates a convenient strategy for mapping the natural diversity of enzyme families and smartly mining the ever-growing number of available sequences in the quest for novel specificities.


Assuntos
Dissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Motivos de Aminoácidos/fisiologia , Bacteroidetes/metabolismo , Escherichia coli/metabolismo , Fosforilases/metabolismo , Filogenia , Especificidade por Substrato
9.
Chembiochem ; 22(23): 3319-3325, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34541742

RESUMO

The substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks. The identification and experimental screening of unknown clusters led to the discovery of an enzyme from the soil bacterium Paenibacillus polymyxa that acts as a 4-O-ß-d-glucosyl-d-galactose phosphorylase (GGalP), a specificity that has not been reported to date. Detailed characterization of GGalP revealed that its kinetic parameters were consistent with those of other known phosphorylases. Furthermore, the enzyme could be used for production of the rare disaccharides 4-O-ß-d-glucosyl-d-galactose and 4-O-ß-d-glucosyl-l-arabinose. Our current work highlights the power of rational sequence space exploration in the search for novel enzyme specificities, as well as the potential of phosphorylases for rare disaccharide synthesis.


Assuntos
Glicosídeo Hidrolases/metabolismo , Paenibacillus polymyxa/enzimologia , Dissacarídeos/biossíntese , Dissacarídeos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Modelos Moleculares , Estrutura Molecular , Filogenia , Especificidade por Substrato
10.
Appl Microbiol Biotechnol ; 105(10): 4073-4087, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33970317

RESUMO

ß-Glucan phosphorylases are carbohydrate-active enzymes that catalyze the reversible degradation of ß-linked glucose polymers, with outstanding potential for the biocatalytic bottom-up synthesis of ß-glucans as major bioactive compounds. Their preference for sugar phosphates (rather than nucleotide sugars) as donor substrates further underlines their significance for the carbohydrate industry. Presently, they are classified in the glycoside hydrolase families 94, 149, and 161 ( www.cazy.org ). Since the discovery of ß-1,3-oligoglucan phosphorylase in 1963, several other specificities have been reported that differ in linkage type and/or degree of polymerization. Here, we present an overview of the progress that has been made in our understanding of ß-glucan and associated ß-glucobiose phosphorylases, with a special focus on their application in the synthesis of carbohydrates and related molecules. KEY POINTS: • Discovery, characteristics, and applications of ß-glucan phosphorylases. • ß-Glucan phosphorylases in the production of functional carbohydrates.


Assuntos
beta-Glucanas , Biocatálise , Metabolismo dos Carboidratos , Glicosídeo Hidrolases/metabolismo , Humanos , Fosforilases/metabolismo
11.
Chembiochem ; 22(18): 2777-2782, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33991026

RESUMO

2-O-Glucosylglycerol is accumulated by various bacteria and plants in response to environmental stress. It is widely applied as a bioactive moisturising ingredient in skin care products, for which it is manufactured via enzymatic glucosylation of glycerol by the sucrose phosphorylase from Leuconostoc mesenteroides. This industrial process is operated at room temperature due to the mediocre stability of the biocatalyst, often leading to microbial contamination. The highly thermostable sucrose phosphorylase from Bifidobacterium adolescentis could be a better alternative in that regard, but this enzyme is not fit for production of 2-O-glucosylglycerol due to its low regioselectivity and poor affinity for glycerol. In this work, the thermostable phosphorylase was engineered to alleviate these problems. Several engineering approaches were explored, ranging from site-directed mutagenesis to conventional, binary, iterative or combinatorial randomisation of the active site, resulting in the screening of ∼3,900 variants. Variant P134Q displayed a 21-fold increase in catalytic efficiency for glycerol, as well as a threefold improvement in regioselectivity towards the 2-position of the substrate, while retaining its activity for several days at elevated temperatures.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosídeos/síntese química , Glucosiltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bifidobacterium adolescentis/enzimologia , Sítios de Ligação , Biocatálise , Domínio Catalítico , Glucosídeos/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Cinética , Leuconostoc mesenteroides/enzimologia , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Estereoisomerismo , Especificidade por Substrato
12.
J Enzyme Inhib Med Chem ; 35(1): 1964-1989, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33164573

RESUMO

Although trehalose has recently gained interest because of its pharmaceutical potential, its clinical use is hampered due to its low bioavailability. Hence, hydrolysis-resistant trehalose analogues retaining biological activity could be of interest. In this study, 34 4- and 6-O-substituted trehalose derivatives were synthesised using an ether- or carbamate-type linkage. Their hydrolysis susceptibility and inhibitory properties were determined against two trehalases, i.e. porcine kidney and Mycobacterium smegmatis. With the exception of three weakly hydrolysable 6-O-alkyl derivatives, the compounds generally showed to be completely resistant. Moreover, a number of derivatives was shown to be an inhibitor of one or both of these trehalases. For the strongest inhibitors of porcine kidney trehalase IC50 values of around 10 mM could be determined, whereas several compounds displayed sub-mM IC50 against M. smegmatis trehalase. Dockings studies were performed to explain the observed influence of the substitution pattern on the inhibitory activity towards porcine kidney trehalase.


Assuntos
Inibidores Enzimáticos/síntese química , Trealase/antagonistas & inibidores , Trealose/síntese química , Alquilação , Animais , Carbamatos/química , Inibidores Enzimáticos/metabolismo , Éter/química , Hidrólise , Rim/enzimologia , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/enzimologia , Ligação Proteica , Relação Estrutura-Atividade , Suínos , Trealose/metabolismo
13.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260541

RESUMO

Sucrose phosphorylases are carbohydrate-active enzymes with outstanding potential for the biocatalytic conversion of common table sugar into products with attractive properties. They belong to the glycoside hydrolase family GH13, where they are found in subfamily 18. In bacteria, these enzymes catalyse the phosphorolysis of sucrose to yield α-glucose 1-phosphate and fructose. However, sucrose phosphorylases can also be applied as versatile transglucosylases for the synthesis of valuable glycosides and sugars because their broad promiscuity allows them to transfer the glucosyl group of sucrose to a diverse collection of compounds other than phosphate. Numerous process and enzyme engineering studies have expanded the range of possible applications of sucrose phosphorylases ever further. Moreover, it has recently been discovered that family GH13 also contains a few novel phosphorylases that are specialised in the phosphorolysis of sucrose 6F-phosphate, glucosylglycerol or glucosylglycerate. In this review, we provide an overview of the progress that has been made in our understanding and exploitation of sucrose phosphorylases and related enzymes over the past ten years.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Engenharia de Proteínas/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Estabilidade Enzimática , Glucosiltransferases/química , Glucosiltransferases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeos/síntese química , Especificidade por Substrato
14.
Int J Mol Sci ; 20(16)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405215

RESUMO

In family GH13 of the carbohydrate-active enzyme database, subfamily 18 contains glycoside phosphorylases that act on α-sugars and glucosides. Because their phosphorolysis reactions are effectively reversible, these enzymes are of interest for the biocatalytic synthesis of various glycosidic compounds. Sucrose 6F-phosphate phosphorylases (SPPs) constitute one of the known substrate specificities. Here, we report the characterization of an SPP from Ilumatobacter coccineus with a far stricter specificity than the previously described promiscuous SPP from Thermoanaerobacterium thermosaccharolyticum. Crystal structures of both SPPs were determined to provide insight into their similarities and differences. The residues responsible for binding the fructose 6-phosphate group in subsite +1 were found to differ considerably between the two enzymes. Furthermore, several variants that introduce a higher degree of substrate promiscuity in the strict SPP from I. coccineus were designed. These results contribute to an expanded structural knowledge of enzymes in subfamily GH13_18 and facilitate their rational engineering.


Assuntos
Actinobacteria/enzimologia , Fosforilases/metabolismo , Sacarose/metabolismo , Thermoanaerobacterium/enzimologia , Actinobacteria/química , Actinobacteria/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Fosforilases/química , Conformação Proteica , Especificidade por Substrato , Thermoanaerobacterium/química , Thermoanaerobacterium/metabolismo
15.
Chem Commun (Camb) ; 55(31): 4531-4533, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30924472

RESUMO

The sucrose phosphorylase from Bifidobacterium adolescentis (BaSP) can be used as a transglucosylase for the production of rare sugars. We designed variants of BaSP for the efficient synthesis of nigerose from sucrose and glucose, thereby adding to the inventory of rare sugars that can conveniently be produced from bulk sugars.

16.
ACS Omega ; 3(11): 15235-15245, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30556000

RESUMO

Glycosylation significantly alters the biological and physicochemical properties of small molecules. ß-Lactam alcohols comprise eligible substrates for such a transformation based on their distinct relevance in the chemical and medicinal community. In this framework, the unprecedented enzymatic glycosylation of the rigid and highly strained four-membered ß-lactam azaheterocycle was studied. For this purpose, cis-3-hydroxy-ß-lactams were efficiently prepared in three steps by means of a classical organic synthesis approach, while a biocatalytic step was implemented for the selective formation of the corresponding 3-O-α- and -ß-glucosides, hence overcoming the complexities typically encountered in synthetic glycochemistry and contributing to the increasing demand for sustainable processes in the framework of green chemistry. Two carbohydrate-active enzymes were selected based on their broad acceptor specificity and subsequently applied for the α- or ß-selective formation of ß-lactam-sugar adducts, using sucrose as a glucosyl donor.

17.
Medchemcomm ; 9(6): 1011-1016, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108990

RESUMO

Recent studies point towards the possible disadvantages of using hydroxamic acid-based zinc-binding groups in HDAC inhibitors due to e.g. mutagenicity issues. In this work, we elaborated on our previously developed Tubathian series, a class of highly selective thiaheterocyclic HDAC6 inhibitors, by replacing the benzohydroxamic acid function by an alternative zinc chelator, i.e., an aromatic trifluoromethyl ketone. Unfortunately, these compounds showed a reduced potency to inhibit HDAC6 as compared to their hydroxamic acid counterparts. In agreement, the most active trifluoromethyl ketone was unable to influence the growth of SK-OV-3 ovarian cancer cells nor to alter the acetylation status of tubulin and histone H3. These data suggest that replacement of the zinc-binding hydroxamic acid function with a trifluoromethyl ketone zinc-binding moiety within reported benzohydroxamic HDAC6 inhibitors should not be considered as a standard strategy in HDAC inhibitor development.

18.
Appl Microbiol Biotechnol ; 102(19): 8187-8202, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30043268

RESUMO

α-Glucan phosphorylases (α-GPs) catalyze the reversible phosphorolysis of α-1,4-linked polysaccharides such as glycogen, starch, and maltodextrins, therefore playing a central role in the usage of storage polysaccharides. The discovery of these enzymes and their role in the course of catalytic conversion of glycogen was rewarded with the Nobel Prize in Physiology or Medicine in 1947. Nowadays, however, thermostable representatives attract special attention due to their vast potential in the enzymatic production of diverse carbohydrates and derivatives such as (functional) oligo- and (non-natural) polysaccharides, artificial starch, glycosides, and nucleotide sugars. One of the most recently explored utilizations of α-GPs is their role in the multi-enzymatic process of energy production stored in carbohydrate biobatteries. Regardless of their use, thermostable α-GPs offer significant advantages and facilitated bioprocess design due to their high operational temperatures. Here, we present an overview and comparison of up-to-date characterized thermostable α-GPs with a special focus on their reported biotechnological applications.


Assuntos
Fosforilases/metabolismo , Animais , Biocatálise , Biotecnologia/métodos , Glicogênio/metabolismo , Humanos , Polissacarídeos/metabolismo , Amido/metabolismo
19.
Appl Microbiol Biotechnol ; 102(7): 3183-3191, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29470619

RESUMO

In the carbohydrate-active enzyme database, GH13_18 is a family of retaining glycoside phosphorylases that act on α-glucosides. In this work, we explored the functional diversity of this family by comparing distinctive sequence motifs in different branches of its phylogenetic tree. A glycoside phosphorylase from Marinobacter adhaerens HP15 that was predicted to have a novel function was expressed and characterised. The enzyme was found to catalyse the reversible phosphorolysis of 2-O-α-D-glucosylglycerol with retention of the anomeric configuration, a specificity that has never been described before. Homology modelling, docking and mutagenesis were performed to pinpoint particular acceptor site residues (Tyr194, Ala333, Gln336) involved in the binding of glycerol. The new enzyme specificity provides additional insights into bacterial metabolic routes, being the first report of a phosphorolytic route for glucosylglycerol in a glucosylglycerol-producing organism. Furthermore, glucosylglycerol phosphorylase might be an attractive biocatalyst for the production of the osmolyte glucosylglycerol, which is currently produced on industrial scale by exploiting a side activity of the closely related sucrose phosphorylase. Family GH13_18 has clearly proven to be more diverse than was initially assumed, and the analysis of specificity-determining sequence motifs has shown to be a straightforward and fruitful tool for enzyme discovery.


Assuntos
Variação Genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Marinobacter/enzimologia , Marinobacter/genética , Fosforilases/genética , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucosídeos/metabolismo , Glicosídeo Hidrolases/química , Fosforilases/química , Especificidade por Substrato
20.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754708

RESUMO

Family GH13_18 of the carbohydrate-active enzyme database consists of retaining glycoside phosphorylases that have attracted interest with their potential for synthesizing valuable α-sugars and glucosides. Sucrose phosphorylase was believed to be the only enzyme with specificity in this subfamily for many years, but recent work revealed an enzyme with a different function and hinted at an even broader diversity that is left to discover. In this study, a putative sucrose phosphorylase from Meiothermus silvanus that resides in a previously unexplored branch of the family's phylogenetic tree was expressed and characterized. Unexpectedly, no activity on sucrose was observed. Guided by a thorough inspection of the genomic landscape surrounding other genes in the branch, the enzyme was found to be a glucosylglycerate phosphorylase, with a specificity never before reported. Homology modeling, docking, and mutagenesis pinpointed particular acceptor site residues (Asn275 and Glu383) involved in the binding of glycerate. Various organisms known to synthesize and accumulate glucosylglycerate as a compatible solute possess a putative glucosylglycerate phosphorylase gene, indicating that the phosphorylase may be a regulator of its intracellular levels. Moreover, homologs of this novel enzyme appear to be distributed among diverse bacterial phyla, a finding which suggests that many more organisms may be capable of assimilating or synthesizing glucosylglycerate than previously assumed.IMPORTANCE Glycoside phosphorylases are an intriguing group of carbohydrate-active enzymes that have been used for the synthesis of various economically appealing glycosides and sugars, and they are frequently subjected to enzyme engineering to further expand their application potential. The novel specificity discovered in this work broadens the diversity of these phosphorylases and opens up new possibilities for the efficient production of glucosylglycerate, which is a remarkably potent and versatile stabilizer for protein formulations. Finally, it is a new piece of the puzzle of glucosylglycerate metabolism, being the only known enzyme capable of catalyzing the breakdown of glucosylglycerate in numerous bacterial phyla.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Glucosiltransferases/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucosídeos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Ácidos Glicéricos/metabolismo , Cinética , Filogenia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA