Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(27): 33013-33027, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37389477

RESUMO

In the search for post-lithium battery systems, magnesium-sulfur batteries have attracted research attention in recent years due to their high potential energy density, raw material abundance, and low cost. Despite significant progress, the system still lacks cycling stability mainly associated with the ongoing parasitic reduction of sulfur at the anode surface, resulting in the loss of active materials and passivating surface layer formation on the anode. In addition to sulfur retention approaches on the cathode side, the protection of the reductive anode surface by an artificial solid electrolyte interphase (SEI) represents a promising approach, which contrarily does not impede the sulfur cathode kinetics. In this study, an organic coating approach based on ionomers and polymers is pursued to combine the desired properties of mechanical flexibility and high ionic conductivity while enabling a facile and energy-efficient preparation. Despite exhibiting higher polarization overpotentials in Mg-Mg cells, the charge overpotential in Mg-S cells was decreased by the coated anodes with the initial Coulombic efficiency being significantly increased. Consequently, the discharge capacity after 300 cycles applying an Aquivion/PVDF-coated Mg anode was twice that of a pristine Mg anode, indicating effective polysulfide repulsion from the Mg surface by the artificial SEI. This was backed by operando imaging during long-term OCV revealing a non-colored separator, i.e. mitigated self-discharge. While SEM, AFM, IR and XPS were applied to gain further insights into the surface morphology and composition, scalable coating techniques were investigated in addition to ensure practical relevance. Remarkably therein, the Mg anode preparation and all surface coatings were prepared under ambient conditions, which facilitates future electrode and cell assembly. Overall, this study highlights the important role of Mg anode coatings to improve the electrochemical performance of magnesium-sulfur batteries.

2.
ChemSusChem ; 16(13): e202202211, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929811

RESUMO

Assessing novel electrocatalysts for the electrochemical ammonia synthesis (EAS) requires reliable quantitative trace analysis of electrochemically produced ammonia to infer activity and selectivity. This study concerns the development of an ion chromatography (IC) method for quantitative trace analysis of ammonium in 0.1 M sulfuric acid electrolyte, which is applied to EAS gas-diffusion electrode (GDE) experiments with commercial chromium nitride as electrocatalyst. The developed IC method is highly sensitive, versatile, and reliable, achieving a limit of quantification (LOQ) of 6 µg l-1 (6 ppbmol ) ammonium. The impacts of the sample matrix, dilution, and neutralization, as well as contamination, on the quantitative analysis by IC are analyzed. Experimental constraints result in an effective LOQ including dilution of 60 µg l-1 for the determination of ammonium in 0.1 M sulfuric acid electrolyte, owing to necessary sample dilution. The practical guide presented herein is intended to be very relevant for the field of EAS as a guideline and applicable to a broad range of catalyst systems and ion chromatography devices.


Assuntos
Amônia , Compostos de Amônio , Cromatografia/métodos , Ácidos Sulfúricos
3.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268859

RESUMO

For proton exchange membrane water electrolysis (PEMWE) to become competitive, the cost of stack components, such as bipolar plates (BPP), needs to be reduced. This can be achieved by using coated low-cost materials, such as copper as alternative to titanium. Herein we report on highly corrosion-resistant copper BPP coated with niobium. All investigated samples showed excellent corrosion resistance properties, with corrosion currents lower than 0.1 µA cm-2 in a simulated PEM electrolyzer environment at two different pH values. The physico-chemical properties of the Nb coatings are thoroughly characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). A 30 µm thick Nb coating fully protects the Cu against corrosion due to the formation of a passive oxide layer on its surface, predominantly composed of Nb2O5. The thickness of the passive oxide layer determined by both EIS and XPS is in the range of 10 nm. The results reported here demonstrate the effectiveness of Nb for protecting Cu against corrosion, opening the possibility to use it for the manufacturing of BPP for PEMWE. The latter was confirmed by its successful implementation in a single cell PEMWE based on hydraulic compression technology.

4.
ChemSusChem ; 14(21): 4820-4835, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34459116

RESUMO

The performance of rechargeable magnesium batteries is strongly dependent on the choice of electrolyte. The desolvation of multivalent cations usually goes along with high energy barriers, which can have a crucial impact on the plating reaction. This can lead to significantly higher overpotentials for magnesium deposition compared to magnesium dissolution. In this work we combine experimental measurements with DFT calculations and continuum modelling to analyze Mg deposition in various solvents. Jointly, these methods provide a better understanding of the electrode reactions and especially the magnesium deposition mechanism. Thereby, a kinetic model for electrochemical reactions at metal electrodes is developed, which explicitly couples desolvation to electron transfer and, furthermore, qualitatively takes into account effects of the electrochemical double layer. The influence of different solvents on the battery performance is studied for the state-of-the-art magnesium tetrakis(hexafluoroisopropyloxy)borate electrolyte salt. It becomes apparent that not necessarily a whole solvent molecule must be stripped from the solvated magnesium cation before the first reduction step can take place. For Mg reduction it seems to be sufficient to have one coordination site available, so that the magnesium cation is able to get closer to the electrode surface. Thereby, the initial desolvation of the magnesium cation determines the deposition reaction for mono-, tri- and tetraglyme, whereas the influence of the desolvation on the plating reaction is minor for diglyme and tetrahydrofuran. Overall, we can give a clear recommendation for diglyme to be applied as solvent in magnesium electrolytes.

5.
ChemSusChem ; 14(11): 2401-2413, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33844883

RESUMO

Ni-doped chromite anodes were integrated into electrolyte-supported cells (ESC) with 5×5 cm2 size and investigated in fuel cell mode with H2 /H2 O fuel gas. Both a stoichiometric and a nominally A-site deficient chromite anode material showed promising performance at 860 °C approaching the ones of state-of-the-art Ni/Gd-doped ceria (CGO) anodes. While the difference in polarization resistance was small, an increased ohmic resistance of the perovskite anodes was observed, which is related to their limited electronic conductivity. Increasing the chromite electrode thickness was shown to enhance performance and stability considerably. Degradation increased with current density, suggesting its dependency on the electrode potential, and could be reversed by redox cycling. Sulfur poisoning with 20 ppm hydrogen sulfide led to rapid voltage drops for the chromite anodes. It is discussed that Ni nanoparticle exsolution facilitates hydrogen dissociation to the extent that it is not rate-limiting at the investigated temperature unless an insufficiently thick electrode thickness is employed or sulfur impurities are present in the feed gas.

6.
J Phys Chem Lett ; 9(11): 3154-3160, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775319

RESUMO

Progress in the development of proton exchange membrane (PEM) water electrolysis technology requires decreasing the anode overpotential, where the sluggish multistep oxygen evolution reaction (OER) occurs. This calls for an understanding of the nature of the active OER sites and reaction intermediates, which are still being debated. In this work, we apply synchrotron radiation-based near-ambient pressure X-ray photoelectron and absorption spectroscopies under operando conditions in order to unveil the nature of the reaction intermediates and shed light on the OER mechanism on electrocatalysts most widely used in PEM electrolyzers-electrochemical and thermal iridium oxides. Analysis of the O K-edge and Ir 4f spectra backed by density functional calculations reveals a universal oxygen anion red-ox mechanism regardless of the nature (electrochemical or thermal) of the iridium oxide. The formation of molecular oxygen is considered to occur through a chemical step from the electrophilic OI- species, which itself is formed in an electrochemical step.

7.
ACS Appl Mater Interfaces ; 9(41): 35794-35801, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28920669

RESUMO

The solid electrolyte interphase (SEI) is a complex and fragile passivation layer with crucial importance for the functionality of lithium-ion batteries. Due to its fragility and reactivity, the use of in situ techniques is preferable for the determination of the SEI's true structure and morphology during its formation. In this study, we use in situ neutron reflectometry (NR) and in situ atomic force microscopy (AFM) to investigate the SEI formation on a carbon surface. It was found that a lithium-rich adsorption layer is already present at the open circuit voltage on the carbon sample surface and that the first decomposition products start to deposit close to this potential. During the negative potential sweep, the growth of the SEI can be observed in detail by AFM and NR. This allows precise monitoring of the morphology evolution and the resulting heterogeneities of individual SEI features. NR measurements show a maximum SEI thickness of 192 Å at the lower cutoff potential (0.02 V vs Li/Li+), which slightly decreases during the positive potential scan. The scattering length density (SLD) obtained by NR provides additional information on the SEI's chemical nature and structural evolution.

8.
ChemSusChem ; 10(3): 587-599, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-27863123

RESUMO

The focus of this study is the measurement and understanding of the sulfur poisoning phenomena of Ni/gadolinium-doped ceria (CGO) based solid oxide fuel cells (SOFC). Cells with Ni/CGO10 and NiCu5/CGO40 anodes were characterized by using impedance spectroscopy at different temperatures and H2 /H2 O fuel ratios. The short-term sulfur poisoning behavior was investigated systematically at temperatures of 800-950 °C, current densities of 0-0.75 A cm-2 , and H2 S concentrations of 1-20 ppm. A sulfur poisoning mitigation effect was observed at high current loads and temperatures. The poisoning behavior was reversible for short exposure times. It was observed that the sulfur-affected processes exhibited significantly different relaxation times that depend on the Gd content in the CGO phase. Moreover, it was demonstrated that the capacitance of Ni/CGO10 anodes is strongly dependent on the temperature and gas-phase composition, which reflects a changing Ce3+ /Ce4+ ratio.


Assuntos
Cério/química , Fontes de Energia Elétrica , Gadolínio/química , Níquel/química , Enxofre/química , Condutividade Elétrica , Eletroquímica , Eletrodos , Oxirredução , Temperatura
9.
ACS Appl Mater Interfaces ; 8(40): 27044-27054, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27662413

RESUMO

A quantitative in situ investigation of the structure of the catalytic layer of polymer electrolyte membrane fuel cells using material-sensitive and conductive atomic force microscopy is reported. The distribution and size of the ionomer phase at the surface of the catalytic layer is retrieved from adhesion force mappings, measured at high humidity and up to 75 °C. The average ionomer layer thickness varies between 7 and 13 nm for three differently prepared samples, as concluded from the histograms. Evidence of a lamellar structure of the thinner ionomer layers is presented. A significant thinning of the ionomer layers after long-term fuel cell operation is observed.

10.
J Phys Chem Lett ; 7(16): 3240-5, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27477824

RESUMO

Proton exchange membrane (PEM) electrolyzers are attracting an increasing attention as a promising technology for the renewable electricity storage. In this work, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is applied for in situ monitoring of the surface state of membrane electrode assemblies with RuO2 and bimetallic Ir0.7Ru0.3O2 anodes during water splitting. We demonstrate that Ir protects Ru from the formation of an unstable hydrous Ru(IV) oxide thereby rendering bimetallic Ru-Ir oxide electrodes with higher corrosion resistance. We further show that the water splitting occurs through a surface Ru(VIII) intermediate, and, contrary to common opinion, the presence of Ir does not hinder its formation.

11.
Phys Chem Chem Phys ; 18(6): 4487-95, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26791108

RESUMO

PEM water electrolysis has recently emerged as one of the most promising technologies for large H2 production from a temporal surplus of renewable electricity; yet it is expensive, partly due to the use of large amounts of Ir present in the anode. Here we report the development and characterization of a cost-effective catalyst, which consists of metallic Ir nanoparticles supported on commercial Ti4O7. The catalyst is synthesized by reducing IrCl3 with NaBH4 in a suspension containing Ti4O7, cetyltrimethylammonium bromide (CTAB) and anhydrous ethanol. No thermal treatment was applied afterwards in order to preserve the high conductivity of Ti4O7 and the metallic properties of Ir. Electron microscopy images show an uniform distribution of mostly single Ir particles covering the electro-ceramic support, although some agglomerates are still present. X-ray diffraction (XRD) analysis reveals a cubic face centered structure of Ir nanoparticles with a crystallite size of ca. 1.8 nm. According to X-ray photoelectron spectroscopy (XPS), the ratio of metallic Ir and Ir-oxide, identified as Ir(3+), is 3 : 1 after the removal of surface contamination. Other surface properties such as primary particle size distribution and surface potential were determined by atomic force microscopy (AFM). Cyclic and linear voltammetric measurements were conducted to study the electrochemical surface and kinetics of Ir-black and Ir/Ti4O7. The developed catalyst outperforms the commercial Ir-black in terms of mass activity for the oxygen evolution reaction (OER) in acid medium by a factor of four, measured at 0.25 V overpotential and room temperature. In general, the Ir/Ti4O7 catalyst exhibits improved kinetics and higher turnover frequency (TOF) compared to Ir-black. The developed Ir/Ti4O7 catalyst allows reducing the precious metal loading in the anode of a PEM electrolyzer by taking advantage of the use of an electro-ceramic support.

12.
Beilstein J Nanotechnol ; 4: 611-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205455

RESUMO

In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium-sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)(-1) after 43 cycles.

13.
Membranes (Basel) ; 2(4): 783-803, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-24958429

RESUMO

The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail.

14.
Phys Chem Chem Phys ; 9(21): 2735-43, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17627317

RESUMO

High membrane conductivity is one of the key parameters in polymer electrolyte fuel cell applications. We introduce an electrochemical atomic force microscopy method that provides simultaneously the surface topography of a Nafion 112 membrane and the conductivity of ion channels with an unprecedented resolution of ca. 10 nm. For given conditions, a large fraction of the channel ports is found to conduct exactly the same number of protons per unit time. This is taken as evidence for an optimum pore size and structure for proton conduction, or alternatively, for an efficient connectivity of the ion channel network, so that the same conductivity is measured at all exit pores. The time response following a potential step and the influence of the relative humidity on the transport properties is investigated. The method will be of relevance for tailoring the production technology to yield an optimised micromorphology, and it permits detailed tests of membrane models and provides data for theoretical modelling of proton conductivity.


Assuntos
Polímeros de Fluorcarboneto/química , Membranas Artificiais , Microscopia de Força Atômica/métodos , Prótons , Eletroquímica , Tamanho da Partícula , Sensibilidade e Especificidade , Propriedades de Superfície , Fatores de Tempo
16.
J Phys Chem B ; 110(37): 18081-7, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16970414

RESUMO

A technique is herein described for the assembly and characterization of nanometer-scale metal electrode|solid electrolyte interfaces of variable dimensions. The specific system examined in this work involves a sharp Pt tip attached to the piezo-driven head of a scanning tunneling microscope (STM) allowing the tip to be inserted into (or retrieved from) a Nafion membrane placed normal to the direction of tip travel. The actual Pt|Nafion area of contact was determined by coulometric analysis of the characteristic voltammetric features of Pt, using the tip as the working electrode and a much larger Pt gauze attached to the other side of the Nafion as a counter-reference electrode, yielding for some of the interfaces examined values equivalent to as low as 35 000 Pt surface atoms. This rather versatile arrangement allows experiments to be performed in both inert (Ar) and reactive atmospheres, such as oxygen or hydrogen on either or both sides of the membrane, under controlled humidity conditions, and thus sheds light into such phenomena as changes in the overall faradaic currents induced by plastic deformations of the Nafion as well as fundamental aspects of mass transport at reactant gas|Pt|Nafion three-boundary interfaces of relevance to polymer electrolyte fuel cells (PEFCs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA