Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(10): 2373-2387, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37486529

RESUMO

Hydrogen peroxide (H2O2) is an important molecule that regulates antioxidant responses that are crucial for plant stress resistance. Exposure to low levels of ultraviolet-B radiation (UV-B, 280-315 nm) can also activate antioxidant defenses and acclimation responses. However, how H2O2 and UV-B interact to promote stress acclimation remains poorly understood. In this work, a transgenic model of Nicotiana tabacum cv Xanthi nc, with elevated Mn-superoxide dismutase (Mn-SOD) activity, was used to study the interaction between the constitutive overproduction of H2O2 and a 14-day UV-B treatment (1.75 kJ m-2 d-1 biologically effective UV-B). Subsequently, these plants were subjected to a 7-day moderate drought treatment to evaluate the impact on drought resistance of H2O2- and UV-dependent stimulation of the plants' antioxidant system. The UV-B treatment enhanced H2O2 levels and altered the antioxidant status by increasing the epidermal flavonol index, Trolox Equivalent Antioxidant Capacity, and catalase, peroxidase and phenylalanine ammonia lyase activities in the leaves. UV-B also retarded growth and suppressed acclimation responses in highly H2O2-overproducing transgenic plants. Plants not exposed to UV-B had a higher drought resistance in the form of higher relative water content of leaves. Our data associate the interaction between Mn-SOD transgene overexpression and the UV-B treatment with a stress response. Finally, we propose a hormetic biphasic drought resistance response curve as a function of leaf H2O2 content in N. tabacum cv Xanthi.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Nicotiana/genética , Secas , Superóxido Dismutase/genética , Folhas de Planta/fisiologia , Aclimatação
2.
Sci Total Environ ; 894: 164883, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348730

RESUMO

Current research in basic and applied knowledge of plant science has aimed to unravel the role of the interaction between environmental factors and the genome in the physiology of plants to confer the ability to overcome challenges in a climate change scenario. Evidence shows that factors causing environmental stress (stressors), whether of biological, chemical, or physical origin, induce eustressing or distressing effects in plants depending on the dose. The latter suggests the induction of the "hormesis" phenomenon. Sustainable crop production requires a better understanding of hormesis, its basic concepts, and the input variables to make its management feasible. This implies that acknowledging hormesis in plant research could allow specifying beneficial effects to effectively manage environmental stressors according to cultivation goals. Several factors have been useful in this regard, which at low doses show beneficial eustressing effects (biostimulant/elicitor), while at higher doses, they show distressing toxic effects. These insights highlight biostimulants/elicitors as tools to be included in integrated crop management strategies for reaching sustainability in plant science and agricultural studies. In addition, compelling evidence on the inheritance of elicited traits in plants unfolds the possibility of implementing stressors as a tool in plant breeding.


Assuntos
Hormese , Melhoramento Vegetal , Plantas , Agricultura , Produção Agrícola
3.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175241

RESUMO

Sweet peppers are consumed worldwide, and traditional uses have sparked interest in their applications as dietary antioxidants, which can be enhanced in plants using elicitors. These are endowed with phytochemicals with potential health benefits such as antioxidants, bioavailability, and bioaccessibility. The trend in metabolomics shows us chemical fingerprints linking metabolomics, innovative analytical form, and bioinformatics tools. The objective was to evaluate the impact of multiple stress interactions, elicitor concentrations, and electrical conductivity on the concentration of secondary metabolites to relate their response to metabolic pathways through the foliar application of a cocktail of said elicitors in pepper crops under greenhouse conditions. The extracts were analyzed by spectrophotometry and gas chromatography, and it was shown that the PCA analysis identified phenolic compounds and low molecular weight metabolites, confirming this as a metabolomic fingerprint in the hierarchical analysis. These compounds were also integrated by simultaneous gene and metabolite simulants to obtain effect information on different metabolic pathways. Showing changes in metabolite levels at T6 (36 mM H2O2 and 3.6 dS/m) and T7 (0.1 mM SA and 3.6 dS/m) but showing statistically significant changes at T5 (3.6 dS/m) and T8 (0.1 mM SA, 36 mM H2O2, and 3.6 dS/m) compared to T1 (32 dS/m) or control. Six pathways changed significantly (p < 0.05) in stress-induced treatments: aminoacyl t-RNA and valine-leucine-isoleucine biosynthesis, and alanine-aspartate-glutamate metabolism, glycoxylate-dicarboxylate cycle, arginine-proline, and citrate. This research provided a complete profile for the characterization of metabolomic fingerprint of bell pepper under multiple stress conditions.


Assuntos
Antioxidantes , Capsicum , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Capsicum/metabolismo , Peróxido de Hidrogênio/metabolismo , Cromatografia Gasosa , Metabolômica/métodos , Espectrofotometria
5.
Sci Rep ; 13(1): 189, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604467

RESUMO

Non-contrast head CT (NCCT) is extremely insensitive for early (< 3-6 h) acute infarct identification. We developed a deep learning model that detects and delineates suspected early acute infarcts on NCCT, using diffusion MRI as ground truth (3566 NCCT/MRI training patient pairs). The model substantially outperformed 3 expert neuroradiologists on a test set of 150 CT scans of patients who were potential candidates for thrombectomy (60 stroke-negative, 90 stroke-positive middle cerebral artery territory only infarcts), with sensitivity 96% (specificity 72%) for the model versus 61-66% (specificity 90-92%) for the experts; model infarct volume estimates also strongly correlated with those of diffusion MRI (r2 > 0.98). When this 150 CT test set was expanded to include a total of 364 CT scans with a more heterogeneous distribution of infarct locations (94 stroke-negative, 270 stroke-positive mixed territory infarcts), model sensitivity was 97%, specificity 99%, for detection of infarcts larger than the 70 mL volume threshold used for patient selection in several major randomized controlled trials of thrombectomy treatment.


Assuntos
Aprendizado Profundo , Acidente Vascular Cerebral , Humanos , Tomografia Computadorizada por Raios X , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Infarto da Artéria Cerebral Média
6.
Nat Biomed Eng ; 7(6): 711-718, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36581695

RESUMO

Predictive machine-learning systems often do not convey the degree of confidence in the correctness of their outputs. To prevent unsafe prediction failures from machine-learning models, the users of the systems should be aware of the general accuracy of the model and understand the degree of confidence in each individual prediction. In this Perspective, we convey the need of prediction-uncertainty metrics in healthcare applications, with a focus on radiology. We outline the sources of prediction uncertainty, discuss how to implement prediction-uncertainty metrics in applications that require zero tolerance to errors and in applications that are error-tolerant, and provide a concise framework for understanding prediction uncertainty in healthcare contexts. For machine-learning-enabled automation to substantially impact healthcare, machine-learning models with zero tolerance for false-positive or false-negative errors must be developed intentionally.


Assuntos
Aprendizado de Máquina , Incerteza
7.
Plants (Basel) ; 11(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559556

RESUMO

Agriculture needs to decrease the use of agrochemicals due to their high toxicity and adopt new strategies to achieve sustainable food production. Therefore, nanoparticles (NPs) and plant growth-promoting bacteria (PGPB) have been proposed as viable strategies to obtain better crop yields with less environmental impact. Here, we describe the effect of silica nanoparticles (SiO2-NPs) on survival, antioxidant enzymatic activity, phosphate solubilization capacity, and gibberellin production of Bacillus cereus-Amazcala (B.c-A). Moreover, the effect of the co-application of SiO2-NPs and B.c-A on seed germination, physiological characteristics, and antioxidant enzymatic activity of chili pepper plants was investigated under greenhouse conditions. The results indicated that SiO2-NPs at 100 ppm enhanced the role of B.c-A as PGPB by increasing its phosphate solubilization capacity and the production of GA7. Moreover, B.c-A catalase (CAT) and superoxide dismutase (SOD) activities were increased with SiO2-NPs 100 ppm treatment, indicating that SiO2-NPs act as a eustressor, inducing defense-related responses. The co-application of SiO2-NPs 100 ppm and B.c-A improved chili pepper growth. There was an increase in seed germination percentage, plant height, number of leaves, and number and yield of fruits. There was also an increase in CAT and PAL activities in chili pepper plants, indicating that bacteria-NP treatment induces plant immunity.

8.
Heliyon ; 8(3): e09049, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35287323

RESUMO

Current agricultural practices for vegetable production are unsustainable, and the use of certain nanomaterials has shown significant potential for either plant growth promotion or defense induction in crop species. The aim of the present work was to evaluate the possible effects of two SBA nano-structured silica materials differing in morphology; SBA-15, with porous structure in parallel and with a highly ordered hexagonal array and SBA-16, with spheric nano-cages located in cubic arrays, as plant growth promoters/eustressors on chili pepper (Capsicum annuum L.) during cultivation under greenhouse conditions. The study was carried out at three foliarly applied concentrations (20, 50 and 100 ppm) of either SBA materials to determine effects on seed germination, seedling growth, plant performance and cold tolerance under greenhouse. Phytotoxicity tests were carried out using higher concentrations (100, 1000 and 200 ppm) applied by dipping or spraying onto chili pepper plants. Deionized water controls were included. The results showed that the SBA materials did not affect seed germination; however, SBA-15 at 50 ppm and 100 ppm applied by imbibition significantly increased seedling height (up to 8-fold) and provided enhanced growth performance in comparison with controls under select treatment regimes. Weekly application of SBA-15 at 20 ppm significantly increased stem diameter and cold tolerance; however, SBA-16 showed significant decreases in plant height (20 ppm biweekly applied) and stem diameter (20, 50 and 100 ppm biweekly applied). The results demonstrate that both SBA materials provided hormetic effects in a dose dependent manner on chili pepper production and protection to cold stress. No phytotoxic response was evident. These findings suggested the nanostructured mesoporous silica have potential as a sustainable amendment strategy to increase crop production under stress-inducing cultivation conditions.

9.
Physiol Plant ; 173(3): 666-679, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33948972

RESUMO

Acclimation of plants to water deficit involves biochemical and physiological adjustments. Here, we studied how ultraviolet (UV)-B exposure and exogenously applied hydrogen peroxide (H2 O2 ) potentiates drought tolerance in tobacco (Nicotiana tabacum L. cv. xanthi nc). Separate and combined applications for 14 days of 1.75 kJ m-2  day-1 UV-B radiation and 0.2 mM H2 O2 were assessed. Both factors, individually and combined, resulted in inhibition of growth. Furthermore, the combined treatment led to the most compacted plants. UV-B- and UV-B + H2 O2 -treated plants increased total antioxidant capacity and foliar epidermal flavonol index. H2 O2 - and UV-B + H2 O2 -pre-treated plants showed cross-tolerance to a subsequent 7-day moderate drought treatment, which was assessed as the absence of negative impact on growth, leaf wilting, and leaf relative water content. Plant responses to the pre-treatment were notably different: (1) H2 O2 increased the activity of catalase (EC 1.11.1.6), phenylalanine ammonia lyase (EC 4.3.1.5), and peroxidase activities (EC 1.11.1.7), and (2) the combined treatment induced epidermal flavonols which were key to drought tolerance. We report synergistic effects of UV-B and H2 O2 on transcription accumulation of UV RESISTANCE LOCUS 8, NAC DOMAIN PROTEIN 13 (NAC13), and BRI1-EMS-SUPPRESSOR 1 (BES1). Our data demonstrate a pre-treatment-dependent response to drought for NAC13, BES1, and CHALCONE SYNTHASE transcript accumulation. This study highlights the potential of combining UV-B and H2 O2 to improve drought tolerance which could become a useful tool to reduce water use.


Assuntos
Secas , Nicotiana , Antioxidantes , Peróxido de Hidrogênio , Folhas de Planta
10.
Oncologist ; 26(11): 919-924, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34041811

RESUMO

Rearrangements involving the neurotrophic receptor tyrosine kinase (NTRK) gene family have been reported in diverse tumor types, and NTRK-targeted therapies have recently been approved. In this article, we report a case of a 26-year-old man with an NTRK2-rearranged isocitrate dehydrogenase-wild-type glioblastoma who showed a robust but temporary response to the NTRK inhibitor larotrectinib. Rebiopsy after disease progression showed elimination of the NTRK2-rearranged tumor cell clones, with secondary emergence of a PDGFRA-amplified subclone. Retrospective examination of the initial biopsy material confirmed rare cells harboring PDGFRA amplification. Although mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma has been previously described, mosaicism involving a fusion gene driver event has not. This case highlights the potential efficacy of NTRK-targeted treatment in glioblastoma and the implications of molecular heterogeneity in the setting of targeted therapy. KEY POINTS: This case highlights the efficacy of the NTRK inhibitor larotrectinib in treating NTRK-rearranged glioblastoma. This is the first case to demonstrate mosaicism in glioblastoma involving both a fusion gene and amplification for receptor tyrosine kinases. Intratumoral heterogeneity in glioblastoma has significant implications for tumor resistance to targeted therapies.


Assuntos
Glioblastoma , Mosaicismo , Adulto , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases , Estudos Retrospectivos
11.
Plants (Basel) ; 10(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477999

RESUMO

Epigenetic regulation is a key component of stress responses, acclimatization and adaptation processes in plants. DNA methylation is a stable mark plausible for the inheritance of epigenetic traits, such that it is a potential scheme for plant breeding. However, the effect of modulators of stress responses, as hydrogen peroxide (H2O2), in the methylome status has not been elucidated. A transgenic tobacco model to the CchGLP gene displayed high H2O2 endogen levels correlated with biotic and abiotic stresses resistance. The present study aimed to determine the DNA methylation status changes in the transgenic model to obtain more information about the molecular mechanism involved in resistance phenotypes. The Whole-genome bisulfite sequencing analysis revealed a minimal impact of overall levels and distribution of methylation. A total of 9432 differential methylated sites were identified in distinct genome regions, most of them in CHG context, with a trend to hypomethylation. Of these, 1117 sites corresponded to genes, from which 83 were also differentially expressed in the plants. Several genes were associated with respiration, energy, and calcium signaling. The data obtained highlighted the relevance of the H2O2 in the homeostasis of the system in stress conditions, affecting at methylation level and suggesting an association of the H2O2 in the physiological adaptation to stress functional linkages may be regulated in part by DNA methylation.

12.
Heliyon ; 6(12): e05802, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33376830

RESUMO

Antimicrobial resistance to antibiotics is a serious health problem worldwide, for this reason, the search for natural agents with antimicrobial power against pathogenic microorganisms is of current importance. The objective of this work was to evaluate the antioxidant capacity (ABTS+ and DPPH), antimicrobial activity, and polyphenol compounds of methanolic and aqueous extracts of Jacaranda mimosifolia flowers. The antimicrobial activity against Bacillus cereus ATCC 10876, Bacillus subtilis ATCC 6633, Enterococcus faecalis ATCC 51299, Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19115, Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 25923, and Streptococcus mutans ATCC 25175, was determined using the Kirby Bauer technique. The results of polyphenolic compounds showed a high amount of total flavonoids in the methanolic and aqueous extracts (503.3 ± 86.5 and 245. 7 ± 27.8 mg Rutin Equivalents/g DW, respectively). Quercetin, gallic acid, caffeic acid, and rutin were identified by the HPLC-DAD technique, while in the GC-MS analysis, esters, fatty acids, organic compounds, as well as monosaccharides were identified. Higher antioxidant capacity was detected by the ABTS technique (94.9% and 62.6%) compared to DPPH values (52.5% and 52.7 %) for methanolic and aqueous extracts, respectively. The methanolic extract showed a greater inhibitory effect on gram-positive bacteria, with a predominant higher inhibition percentage on Listeria monocytogenes and Streptococcus mutans (86% for both). In conclusion, Jacaranda flower extracts could be a natural antimicrobial and antioxidant alternative due to the considerable amount of polyphenolic compounds, and serve as a sustainable alternative for the isolation of active ingredients that could help in agriculture, aquaculture, livestock, pharmaceutics, and other industrial sectors, to remediate problems such as oxidative stress and antimicrobial abuse.

13.
medRxiv ; 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32743599

RESUMO

IMPORTANCE: Microvascular lesions are common in patients with severe COVID-19. Radiologic-pathologic correlation in one case suggests a combination of microvascular hemorrhagic and ischemic lesions that may reflect an underlying hypoxic mechanism of injury, which requires validation in larger studies. OBJECTIVE: To determine the incidence, distribution, and clinical and histopathologic correlates of microvascular lesions in patients with severe COVID-19. DESIGN: Observational, retrospective cohort study: March to May 2020. SETTING: Single academic medical center. PARTICIPANTS: Consecutive patients (16) admitted to the intensive care unit with severe COVID-19, undergoing brain MRI for evaluation of coma or focal neurologic deficits. EXPOSURES: Not applicable. MAIN OUTCOME AND MEASURES: Hypointense microvascular lesions identified by a prototype ultrafast high-resolution susceptibility-weighted imaging (SWI) MRI sequence, counted by two neuroradiologists and categorized by neuroanatomic location. Clinical and laboratory data (most recent measurements before brain MRI). Brain autopsy and cerebrospinal fluid PCR for SARS-CoV 2 in one patient who died from severe COVID-19. RESULTS: Eleven of 16 patients (69%) had punctate and linear SWI lesions in the subcortical and deep white matter, and eight patients (50%) had >10 SWI lesions. In 4/16 patients (25%), lesions involved the corpus callosum. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. CONCLUSIONS AND RELEVANCE: SWI lesions are common in patients with neurological manifestations of severe COVID-19 (coma and focal neurologic deficits). The distribution of lesions is similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Collectively, these radiologic and histopathologic findings suggest that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter.

14.
Emerg Radiol ; 27(3): 269-275, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31955315

RESUMO

PURPOSE: Rapid detection of vessel occlusion is pivotal to the management of patients with acute stroke. Magnetic resonance (MR) T2*-weighted (W) sequence has proven its capability to detect intravascular thrombi, but its diagnostic value compared to computed tomography angiography (CTA) is not well established. We aimed to determine the diagnostic performance of fast 1.5-T MR T2*W sequences compared to CTA for the detection of intra-arterial thrombi in patients with acute stroke. METHODS: About 71 consecutive patients with known middle cerebral artery (MCA) territory stroke were identified. Patients with CTA and MR imaging within 12 h of symptom onset were included in the study. Two investigators reviewed the DWI and T2*W sequences for the presence of infarction and susceptibility vessel sign (SVS). A comparison to the corresponding internal carotid artery (ICA) and M1 and M2 segments of the MCA findings on CTA was made. RESULTS: Of the 51 patients included in our study, CTA thrombi were identified 84% patients (43/51). Of these, 77% (33/43) presented a corresponding SVS on T2*W. A total of 29 CTA thrombi were identified in the M1 segment, and of these, 22 patients had a corresponding SVS. Of the patients without M1 thrombus on CTA, no M1-SVS was detected on T2*W sequences. We found an accuracy of 92%, sensitivity of 85%, specificity of 100%, PPV 100%, and NPV of 86% for M1 occlusion. The Kappa coefficient was 0.79. CONCLUSION: Fast T2*W sequences demonstrated very good diagnostic performance and inter-reader agreement for detecting SVS in the M1 segment in patients with acute ischemic stroke.


Assuntos
Angiografia Cerebral/métodos , Angiografia por Tomografia Computadorizada/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Trombose Intracraniana/diagnóstico por imagem , Idoso , Meios de Contraste , Imagem Ecoplanar , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
15.
Sci Rep ; 9(1): 17709, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776423

RESUMO

Dual-energy CT (DECT) was introduced to address the inability of conventional single-energy computed tomography (SECT) to distinguish materials with similar absorbances but different elemental compositions. However, material decomposition algorithms based purely on the physics of the underlying attenuation process have several limitations, leading to low signal-to-noise ratio (SNR) in the derived material-specific images. To overcome these, we trained a convolutional neural network (CNN) to develop a framework to reconstruct non-contrast SECT images from DECT scans. We show that the traditional physics-based decomposition algorithms do not bring to bear the full information content of the image data. A CNN that leverages the underlying physics of the DECT image generation process as well as the anatomic information gleaned via training with actual images can generate higher fidelity processed DECT images.

16.
Nat Biomed Eng ; 3(3): 173-182, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30948806

RESUMO

Owing to improvements in image recognition via deep learning, machine-learning algorithms could eventually be applied to automated medical diagnoses that can guide clinical decision-making. However, these algorithms remain a 'black box' in terms of how they generate the predictions from the input data. Also, high-performance deep learning requires large, high-quality training datasets. Here, we report the development of an understandable deep-learning system that detects acute intracranial haemorrhage (ICH) and classifies five ICH subtypes from unenhanced head computed-tomography scans. By using a dataset of only 904 cases for algorithm training, the system achieved a performance similar to that of expert radiologists in two independent test datasets containing 200 cases (sensitivity of 98% and specificity of 95%) and 196 cases (sensitivity of 92% and specificity of 95%). The system includes an attention map and a prediction basis retrieved from training data to enhance explainability, and an iterative process that mimics the workflow of radiologists. Our approach to algorithm development can facilitate the development of deep-learning systems for a variety of clinical applications and accelerate their adoption into clinical practice.


Assuntos
Algoritmos , Bases de Dados como Assunto , Aprendizado Profundo , Hemorragias Intracranianas/diagnóstico , Doença Aguda , Hemorragias Intracranianas/diagnóstico por imagem
17.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30919510

RESUMO

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Consenso , Humanos , Prótons
18.
Plant Physiol Biochem ; 134: 94-102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29950274

RESUMO

It has been suggested that accumulation of flavonoids could be a key step in development of plant tolerance to different environmental stresses. Moreover, it has been recognized that abiotic stresses such as drought and UV-B radiation (280-315 nm) induce phenolic compound accumulation, suggesting a role for these compounds in drought tolerance. The aim of the present study was to evaluate the effect of UV-B exposure on chili pepper (Capsicum annuum, cv. 'Coronel') plant performance, phenolic compound production, and gene expression associated with response to subsequent drought stress. Additionally, the phenotypic response to drought stress of these plants was studied. UV-B induced a reduction both in stem length, stem dry weight and number of floral primordia. The largest reduction in these variables was observed when combining UV-B and drought. UV-B-treated well-watered plants displayed fructification approximately 1 week earlier than non-UV-B-treated controls. Flavonoids measured epidermally in leaves significantly increased during UV-B treatment. Specifically, UV-B radiation significantly increased chlorogenic acid and apigenin 8-C-hexoside levels in leaves and a synergistic increase of luteolin 6-C-pentoside-8-C-hexoside was obtained by UV-B and subsequent drought stress. Gene expression of phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes also increased during UV-B treatments. On the other hand, expression of genes related to an oxidative response, such as mitochondrial Mn-superoxide dismutase (Mn-SOD) and peroxidase (POD) was not induced by UV-B. Drought stress in UV-B-treated plants induced mitochondrial Mn-SOD gene expression. Taken together, the UV-B treatment did not induce significant tolerance in plants towards drought stress under the conditions used.


Assuntos
Capsicum/anatomia & histologia , Capsicum/efeitos da radiação , Secas , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenóis/metabolismo , Estresse Fisiológico/efeitos da radiação , Raios Ultravioleta , Biomassa , Capsicum/genética , Estresse Oxidativo/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação , Estresse Fisiológico/genética
19.
Emerg Radiol ; 26(2): 195-203, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30552527

RESUMO

Stroke is one of the leading causes of death and disability worldwide. Standard treatment for stroke is intravenous (IV) injection of tissue plasminogen activator (t-PA) rapidly after symptom onset. However, there are limitations of IV t-PA treatment, such as a short time window for administration and risk for hemorrhage. Recent trials have demonstrated the benefit of endovascular treatment when added to standard treatment to improve outcomes for patients. Advanced imaging was utilized in some trials to identify patients with proximal intracranial occlusion to target for endovascular reperfusion therapy, and to exclude patients with large infarct cores or poor collateral circulation who would not be expected to benefit from intervention. This article summarizes the use of imaging in recent stroke trials in details, provides a stroke imaging protocol, and provides tips which radiologists should know to help their neurointerventionalists.


Assuntos
Procedimentos Endovasculares , Neuroimagem/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Trombectomia/métodos , Angiografia Cerebral , Ensaios Clínicos como Assunto , Angiografia por Tomografia Computadorizada , Humanos , Imageamento por Ressonância Magnética , Resultado do Tratamento
20.
Molecules ; 23(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380710

RESUMO

In Mexico one in 14 deaths are caused by diabetes mellitus (DM) or by the macro and microvascular disorders derived from it. A continuous hyperglycemic state is characteristic of DM, resulting from a sustained state of insulin resistance and/or a dysfunction of ß-pancreatic cells. Acaciella angustissima is a little studied species showing a significant antioxidant activity that can be used as treatment of this disease or preventive against the complications. The objective of this study was to explore the effect of oral administration of A. angustissima methanol extract on physiological parameters of streptozotocin-induced diabetic rats. The results indicated a significant reduction in blood glucose levels, an increase in serum insulin concentration, a decrease in lipid levels and an improvement in the parameters of kidney damage by applying a concentration of 100 mg/Kg B.W. However, glucose uptake activity was not observed in the adipocyte assay. Moreover, the extract of A. angustissima displayed potential for the complementary treatment of diabetes and its complications likely due to the presence of bioactive compounds such as protocatechuic acid. This study demonstrated that methanol extract of Acacciella angustissima has an antidiabetic effect by reducing the levels of glucose, insulin and improved physiological parameters, hypolipidemic effect, oxidative stress and renal damage in diabetic rats.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Fabaceae/química , Hipolipemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Frutas/química , Humanos , Hipolipemiantes/química , Insulina/sangue , Antagonistas da Insulina/administração & dosagem , Antagonistas da Insulina/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA