Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PNAS Nexus ; 3(1): pgad453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222469

RESUMO

The discovery of allosteric modulators is an emerging paradigm in drug discovery, and signal transduction is a subtle and dynamic process that is challenging to characterize. We developed a time-correlated single photon-counting imaging approach to investigate the structural mechanisms for small-molecule activation of the cardiac sarcoplasmic reticulum Ca2+-ATPase, a pharmacologically important pump that transports Ca2+ at the expense of adenosine triphosphate (ATP) hydrolysis. We first tested whether the dissociation of sarcoplasmic reticulum Ca2+-ATPase from its regulatory protein phospholamban is required for small-molecule activation. We found that CDN1163, a validated sarcoplasmic reticulum Ca2+-ATPase activator, does not have significant effects on the stability of the sarcoplasmic reticulum Ca2+-ATPase-phospholamban complex. Time-correlated single photon-counting imaging experiments using the nonhydrolyzable ATP analog ß,γ-Methyleneadenosine 5'-triphosphate (AMP-PCP) showed ATP is an allosteric modulator of sarcoplasmic reticulum Ca2+-ATPase, increasing the fraction of catalytically competent structures at physiologically relevant Ca2+ concentrations. Unlike ATP, CDN1163 alone has no significant effects on the Ca2+-dependent shifts in the structural populations of sarcoplasmic reticulum Ca2+-ATPase, and it does not increase the pump's affinity for Ca2+ ions. However, we found that CDN1163 enhances the ATP-mediated modulatory effects to increase the population of catalytically competent sarcoplasmic reticulum Ca2+-ATPase structures. Importantly, this structural shift occurs within the physiological window of Ca2+ concentrations at which sarcoplasmic reticulum Ca2+-ATPase operates. We demonstrated that ATP is both a substrate and modulator of sarcoplasmic reticulum Ca2+-ATPase and showed that CDN1163 and ATP act synergistically to populate sarcoplasmic reticulum Ca2+-ATPase structures that are primed for phosphorylation. This study provides novel insights into the structural mechanisms for sarcoplasmic reticulum Ca2+-ATPase activation by its substrate and a synthetic allosteric modulator.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119613, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918638

RESUMO

Myoregulin (MLN) is a protein that regulates the activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) without affecting its affinity for Ca2+. MLN's residue Lys27 is located at a site where other SERCA regulators control Ca2+ affinity. Therefore, we conducted atomistic simulations and ATPase activity experiments to determine whether replacing Lys27 with asparagine, a conserved residue found in various muscle SERCA regulators, would enable MLN to modulate both the Ca2+ affinity and catalytic activity of SERCA. Our findings indicate that replacing Lys27 with Asn significantly enhances the inhibitory potency of MLN, but it does not affect SERCA's affinity for Ca2+. We suggest that the SERCA site modulating Ca2+ affinity also acts as a catalytic activity switch. Therefore, this site is a key element contributing to the functional divergence among homologous SERCA regulators. This study paves the way for future investigations to explore how biological function diverges during the evolution of the SERCA regulator family.


Assuntos
Asparagina , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Asparagina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
3.
Biochemistry ; 62(8): 1331-1336, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37014032

RESUMO

Myoregulin (MLN) is a member of the regulin family, a group of homologous membrane proteins that bind to and regulate the activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA). MLN, which is expressed in skeletal muscle, contains an acidic residue in its transmembrane domain. The location of this residue, Asp35, is unusual because the relative occurrence of aspartate is very rare (<0.2%) within the transmembrane helix regions. Therefore, we used atomistic simulations and ATPase activity assays of protein co-reconstitutions to probe the functional role of MLN residue Asp35. These structural and functional studies showed Asp35 has no effects on SERCA's affinity for Ca2+ or the structural integrity of MLN in the lipid bilayer. Instead, Asp35 controls SERCA inhibition by populating a bound-like orientation of MLN. We propose Asp35 provides a functional advantage over other members of the regulin family by populating preexisting MLN conformations required for MLN-specific regulation of SERCA. Overall, this study provides new clues about the evolution and functional divergence of the regulin family and offers novel insights into the functional role of acidic residues in transmembrane protein domains.


Assuntos
Cálcio , Músculo Esquelético , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Transporte de Íons , Conformação Molecular , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Humanos
4.
J Biol Chem ; 299(5): 104681, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030504

RESUMO

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Miocárdio/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Aprendizado de Máquina
5.
Elife ; 112022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762211

RESUMO

Background: Patients with cardiomyopathy of Duchenne Muscular Dystrophy (DMD) are at risk of developing life-threatening arrhythmias, but the mechanisms are unknown. We aimed to determine the role of ion channels controlling cardiac excitability in the mechanisms of arrhythmias in DMD patients. Methods: To test whether dystrophin mutations lead to defective cardiac NaV1.5-Kir2.1 channelosomes and arrhythmias, we generated iPSC-CMs from two hemizygous DMD males, a heterozygous female, and two unrelated control males. We conducted studies including confocal microscopy, protein expression analysis, patch-clamping, non-viral piggy-bac gene expression, optical mapping and contractility assays. Results: Two patients had abnormal ECGs with frequent runs of ventricular tachycardia. iPSC-CMs from all DMD patients showed abnormal action potential profiles, slowed conduction velocities, and reduced sodium (INa) and inward rectifier potassium (IK1) currents. Membrane NaV1.5 and Kir2.1 protein levels were reduced in hemizygous DMD iPSC-CMs but not in heterozygous iPSC-CMs. Remarkably, transfecting just one component of the dystrophin protein complex (α1-syntrophin) in hemizygous iPSC-CMs from one patient restored channelosome function, INa and IK1 densities, and action potential profile in single cells. In addition, α1-syntrophin expression restored impulse conduction and contractility and prevented reentrant arrhythmias in hiPSC-CM monolayers. Conclusions: We provide the first demonstration that iPSC-CMs reprogrammed from skin fibroblasts of DMD patients with cardiomyopathy have a dysfunction of the NaV1.5-Kir2.1 channelosome, with consequent reduction of cardiac excitability and conduction. Altogether, iPSC-CMs from patients with DMD cardiomyopathy have a NaV1.5-Kir2.1 channelosome dysfunction, which can be rescued by the scaffolding protein α1-syntrophin to restore excitability and prevent arrhythmias. Funding: Supported by National Institutes of Health R01 HL122352 grant; 'la Caixa' Banking Foundation (HR18-00304); Fundación La Marató TV3: Ayudas a la investigación en enfermedades raras 2020 (LA MARATO-2020); Instituto de Salud Carlos III/FEDER/FSE; Horizon 2020 - Research and Innovation Framework Programme GA-965286 to JJ; the CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). American Heart Association postdoctoral fellowship 19POST34380706s to JVEN. Israel Science Foundation to OB and MA [824/19]. Rappaport grant [01012020RI]; and Niedersachsen Foundation [ZN3452] to OB; US-Israel Binational Science Foundation (BSF) to OB and TH [2019039]; Dr. Bernard Lublin Donation to OB; and The Duchenne Parent Project Netherlands (DPPNL 2029771) to OB. National Institutes of Health R01 AR068428 to DM and US-Israel Binational Science Foundation Grant [2013032] to DM and OB.


Assuntos
Proteínas de Ligação ao Cálcio , Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Proteínas de Membrana , Proteínas Musculares , Distrofia Muscular de Duchenne , Canais de Potássio Corretores do Fluxo de Internalização , Potenciais de Ação , Arritmias Cardíacas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/metabolismo , Distrofina/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
6.
Comput Struct Biotechnol J ; 20: 380-384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035790

RESUMO

Phospholamban (PLN) and Sarcolipin (SLN) are homologous membrane proteins that belong to the family of proteins that regulate the activity of the cardiac calcium pump (sarcoplasmic reticulum Ca2+-ATPase, SERCA). PLN and SLN share highly conserved leucine zipper motifs that control self-association; consequently, it has been proposed that both PLN and SLN assemble into stable pentamers in the membrane. In this study, we used molecular dynamics (MD) simulations and Western blot analysis to investigate the precise molecular architecture of the PLN and SLN oligomers. Analysis showed that the PLN pentamer is the predominant oligomer present in mouse ventricles and ventricle-like human iPSC-derived cardiomyocytes, in agreement with the MD simulations showing stable leucine zipper interactions across all protomer-protomer interfaces and MD replicates. Interestingly, we found that the PLN pentamer populates an asymmetric structure of the transmembrane region, which is likely an intrinsic feature of the oligomer in a lipid bilayer. The SLN pentamer is not favorably formed across MD replicates and species of origin; instead, SLN from human and mouse atria primarily populate coexisting dimeric and trimeric states. In contrast to previous studies, our findings indicate that the SLN pentamer is not the predominant oligomeric state populated in the membrane. We conclude that despite their structural homology, PLN and SLN adopt distinct oligomeric states in the membrane. We propose that the distinct oligomeric states populated by PLN and SLN may contribute to tissue-specific SERCA regulation via differences in protomer-oligomer exchange, oligomer-SERCA dynamics, and noise filtering during ß-adrenergic stimulation in the heart.

7.
Sci Rep ; 11(1): 16580, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400719

RESUMO

Membrane proteins constitute a substantial fraction of the human proteome, thus representing a vast source of therapeutic drug targets. Indeed, newly devised technologies now allow targeting "undruggable" regions of membrane proteins to modulate protein function in the cell. Despite the advances in technology, the rapid translation of basic science discoveries into potential drug candidates targeting transmembrane protein domains remains challenging. We address this issue by harmonizing single molecule-based and ensemble-based atomistic simulations of ligand-membrane interactions with patient-derived induced pluripotent stem cell (iPSC)-based experiments to gain insights into drug delivery, cellular efficacy, and safety of molecules directed at membrane proteins. In this study, we interrogated the pharmacological activation of the cardiac Ca2+ pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA2a) in human iPSC-derived cardiac cells as a proof-of-concept model. The combined computational-experimental approach serves as a platform to explain the differences in the cell-based activity of candidates with similar functional profiles, thus streamlining the identification of drug-like candidates that directly target SERCA2a activation in human cardiac cells. Systematic cell-based studies further showed that a direct SERCA2a activator does not induce cardiotoxic pro-arrhythmogenic events in human cardiac cells, demonstrating that pharmacological stimulation of SERCA2a activity is a safe therapeutic approach targeting the heart. Overall, this novel multiscale platform encompasses organ-specific drug potency, efficacy, and safety, and opens new avenues to accelerate the bench-to-patient research aimed at designing effective therapies directed at membrane protein domains.


Assuntos
Proteínas de Membrana/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Ativação Enzimática/efeitos dos fármacos , Células Gigantes/enzimologia , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Microssomos/enzimologia , Simulação de Dinâmica Molecular , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fosfatidilcolinas , Domínios Proteicos/efeitos dos fármacos , Retículo Sarcoplasmático/enzimologia , Bibliotecas de Moléculas Pequenas/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacologia , Suínos , Água
9.
Cardiovasc Res ; 117(3): 876-889, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32346730

RESUMO

AIMS: Human influenza A virus (hIAV) infection is associated with important cardiovascular complications, although cardiac infection pathophysiology is poorly understood. We aimed to study the ability of hIAV of different pathogenicity to infect the mouse heart, and establish the relationship between the infective capacity and the associated in vivo, cellular and molecular alterations. METHODS AND RESULTS: We evaluated lung and heart viral titres in mice infected with either one of several hIAV strains inoculated intranasally. 3D reconstructions of infected cardiac tissue were used to identify viral proteins inside mouse cardiomyocytes, Purkinje cells, and cardiac vessels. Viral replication was measured in mouse cultured cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to confirm infection and study underlying molecular alterations associated with the in vivo electrophysiological phenotype. Pathogenic and attenuated hIAV strains infected and replicated in cardiomyocytes, Purkinje cells, and hiPSC-CMs. The infection was also present in cardiac endothelial cells. Remarkably, lung viral titres did not statistically correlate with viral titres in the mouse heart. The highly pathogenic human recombinant virus PAmut showed faster replication, higher level of inflammatory cytokines in cardiac tissue and higher viral titres in cardiac HL-1 mouse cells and hiPSC-CMs compared with PB2mut-attenuated virus. Correspondingly, cardiac conduction alterations were especially pronounced in PAmut-infected mice, associated with high mortality rates, compared with PB2mut-infected animals. Consistently, connexin43 and NaV1.5 expression decreased acutely in hiPSC-CMs infected with PAmut virus. YEM1L protease also decreased more rapidly and to lower levels in PAmut-infected hiPSC-CMs compared with PB2mut-infected cells, consistent with mitochondrial dysfunction. Human IAV infection did not increase myocardial fibrosis at 4-day post-infection, although PAmut-infected mice showed an early increase in mRNAs expression of lysyl oxidase. CONCLUSION: Human IAV can infect the heart and cardiac-specific conduction system, which may contribute to cardiac complications and premature death.


Assuntos
Alphainfluenzavirus/patogenicidade , Sistema de Condução Cardíaco/virologia , Miocardite/virologia , Infecções por Orthomyxoviridae/virologia , Animais , Conexinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Cães , Matriz Extracelular/metabolismo , Matriz Extracelular/virologia , Feminino , Fibrose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/patologia , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Alphainfluenzavirus/genética , Alphainfluenzavirus/crescimento & desenvolvimento , Cinética , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação , Miocardite/metabolismo , Miocardite/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/virologia , Carga Viral , Virulência , Replicação Viral , Proteína alfa-5 de Junções Comunicantes
10.
Cardiovasc Res ; 117(7): 1760-1775, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33119050

RESUMO

AIMS: Atrial fibrillation (AF) is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. There is a clear demand for more inclusive and large-scale approaches to understand the molecular drivers responsible for AF, as well as the fundamental mechanisms governing the transition from paroxysmal to persistent and permanent forms. In this study, we aimed to create a molecular map of AF and find the distinct molecular programmes underlying cell type-specific atrial remodelling and AF progression. METHODS AND RESULTS: We used a sheep model of long-standing, tachypacing-induced AF, sampled right and left atrial tissue, and isolated cardiomyocytes (CMs) from control, intermediate (transition), and late time points during AF progression, and performed transcriptomic and proteome profiling. We have merged all these layers of information into a meaningful three-component space in which we explored the genes and proteins detected and their common patterns of expression. Our data-driven analysis points at extracellular matrix remodelling, inflammation, ion channel, myofibril structure, mitochondrial complexes, chromatin remodelling, and genes related to neural function, as well as critical regulators of cell proliferation as hallmarks of AF progression. Most important, we prove that these changes occur at early transitional stages of the disease, but not at later stages, and that the left atrium undergoes significantly more profound changes than the right atrium in its expression programme. The pattern of dynamic changes in gene and protein expression replicate the electrical and structural remodelling demonstrated previously in the sheep and in humans, and uncover novel mechanisms potentially relevant for disease treatment. CONCLUSIONS: Transcriptomic and proteomic analysis of AF progression in a large animal model shows that significant changes occur at early stages, and that among others involve previously undescribed increase in mitochondria, changes to the chromatin of atrial CMs, and genes related to neural function and cell proliferation.


Assuntos
Fibrilação Atrial/metabolismo , Perfilação da Expressão Gênica , Átrios do Coração/metabolismo , Proteoma , Transcriptoma , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Átrios do Coração/fisiopatologia , Frequência Cardíaca , Masculino , Proteômica , Carneiro Doméstico , Fatores de Tempo
11.
Mol Cell Proteomics ; 19(9): 1436-1449, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32541000

RESUMO

Kir2.1, a strong inward rectifier potassium channel encoded by the KCNJ2 gene, is a key regulator of the resting membrane potential of the cardiomyocyte and plays an important role in controlling ventricular excitation and action potential duration in the human heart. Mutations in KCNJ2 result in inheritable cardiac diseases in humans, e.g. the type-1 Andersen-Tawil syndrome (ATS1). Understanding the molecular mechanisms that govern the regulation of inward rectifier potassium currents by Kir2.1 in both normal and disease contexts should help uncover novel targets for therapeutic intervention in ATS1 and other Kir2.1-associated channelopathies. The information available to date on protein-protein interactions involving Kir2.1 channels remains limited. Additional efforts are necessary to provide a comprehensive map of the Kir2.1 interactome. Here we describe the generation of a comprehensive map of the Kir2.1 interactome using the proximity-labeling approach BioID. Most of the 218 high-confidence Kir2.1 channel interactions we identified are novel and encompass various molecular mechanisms of Kir2.1 function, ranging from intracellular trafficking to cross-talk with the insulin-like growth factor receptor signaling pathway, as well as lysosomal degradation. Our map also explores the variations in the interactome profiles of Kir2.1WTversus Kir2.1Δ314-315, a trafficking deficient ATS1 mutant, thus uncovering molecular mechanisms whose malfunctions may underlie ATS1 disease. Finally, using patch-clamp analysis, we validate the functional relevance of PKP4, one of our top BioID interactors, to the modulation of Kir2.1-controlled inward rectifier potassium currents. Our results validate the power of our BioID approach in identifying functionally relevant Kir2.1 interactors and underline the value of our Kir2.1 interactome as a repository for numerous novel biological hypotheses on Kir2.1 and Kir2.1-associated diseases.


Assuntos
Síndrome de Andersen/metabolismo , Miócitos Cardíacos/metabolismo , Placofilinas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Mapas de Interação de Proteínas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Síndrome de Andersen/genética , Síndrome de Andersen/fisiopatologia , Cromatografia Líquida , Desmossomos/efeitos dos fármacos , Desmossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Somatomedinas/metabolismo , Espectrometria de Massas em Tandem , Utrofina/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 318(6): H1357-H1370, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32196358

RESUMO

Synapse-associated protein 97 (SAP97) is a scaffolding protein crucial for the functional expression of several cardiac ion channels and therefore proper cardiac excitability. Alterations in the functional expression of SAP97 can modify the ionic currents underlying the cardiac action potential and consequently confer susceptibility for arrhythmogenesis. In this study, we generated a murine model for inducible, cardiac-targeted Sap97 ablation to investigate arrhythmia susceptibility and the underlying molecular mechanisms. Furthermore, we sought to identify human SAP97 (DLG1) variants that were associated with inherited arrhythmogenic disease. The murine model of cardiac-specific Sap97 ablation demonstrated several ECG abnormalities, pronounced action potential prolongation subject to high incidence of arrhythmogenic afterdepolarizations and notable alterations in the activity of the main cardiac ion channels. However, no DLG1 mutations were found in 40 unrelated cases of genetically elusive long QT syndrome (LQTS). Instead, we provide the first evidence implicating a gain of function in human DLG1 mutation resulting in an increase in Kv4.3 current (Ito) as a novel, potentially pathogenic substrate for Brugada syndrome (BrS). In conclusion, DLG1 joins a growing list of genes encoding ion channel interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. Dysfunction in these critical components of cardiac excitability can potentially result in fatal cardiac disease.NEW & NOTEWORTHY The gene encoding SAP97 (DLG1) joins a growing list of genes encoding ion channel-interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. In this study we provide the first data supporting DLG1-encoded SAP97's candidacy as a minor Brugada syndrome susceptibility gene.


Assuntos
Arritmias Cardíacas/metabolismo , Proteína 1 Homóloga a Discs-Large/metabolismo , Coração/fisiopatologia , Miocárdio/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Proteína 1 Homóloga a Discs-Large/genética , Humanos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo
13.
JCI Insight ; 3(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30232268

RESUMO

Cardiac Nav1.5 and Kir2.1-2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems - rat ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) - demonstrated that endoplasmic reticulum (ER) trafficking-defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking-defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking-defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.


Assuntos
Síndrome de Brugada/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Células CHO , Cricetulus , Proteínas da Matriz do Complexo de Golgi , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Ratos Sprague-Dawley , Canais de Sódio/metabolismo
14.
Circ Res ; 122(11): 1501-1516, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29514831

RESUMO

RATIONALE: In cardiomyocytes, NaV1.5 and Kir2.1 channels interact dynamically as part of membrane bound macromolecular complexes. OBJECTIVE: The objective of this study was to test whether NaV1.5 and Kir2.1 preassemble during early forward trafficking and travel together to common membrane microdomains. METHODS AND RESULTS: In patch-clamp experiments, coexpression of trafficking-deficient mutants Kir2.1Δ314-315 or Kir2.1R44A/R46A with wild-type (WT) NaV1.5WT in heterologous cells reduced inward sodium current compared with NaV1.5WT alone or coexpressed with Kir2.1WT. In cell surface biotinylation experiments, expression of Kir2.1Δ314-315 reduced NaV1.5 channel surface expression. Glycosylation analysis suggested that NaV1.5WT and Kir2.1WT channels associate early in their biosynthetic pathway, and fluorescence recovery after photobleaching experiments demonstrated that coexpression with Kir2.1 increased cytoplasmic mobility of NaV1.5WT, and vice versa, whereas coexpression with Kir2.1Δ314-315 reduced mobility of both channels. Viral gene transfer of Kir2.1Δ314-315 in adult rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current and inward sodium current, maximum diastolic potential and action potential depolarization rate, and increased action potential duration. On immunostaining, the AP1 (adaptor protein complex 1) colocalized with NaV1.5WT and Kir2.1WT within areas corresponding to t-tubules and intercalated discs. Like Kir2.1WT, NaV1.5WT coimmunoprecipitated with AP1. Site-directed mutagenesis revealed that NaV1.5WT channels interact with AP1 through the NaV1.5Y1810 residue, suggesting that, like for Kir2.1WT, AP1 can mark NaV1.5 channels for incorporation into clathrin-coated vesicles at the trans-Golgi. Silencing the AP1 ϒ-adaptin subunit in human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current, inward sodium current, and maximum diastolic potential and impaired rate-dependent action potential duration adaptation. CONCLUSIONS: The NaV1.5-Kir2.1 macromolecular complex pre-assembles early in the forward trafficking pathway. Therefore, disruption of Kir2.1 trafficking in cardiomyocytes affects trafficking of NaV1.5, which may have important implications in the mechanisms of arrhythmias in inheritable cardiac diseases.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sarcolema/metabolismo , Potenciais de Ação , Animais , Corantes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Canais de Sódio Disparados por Voltagem/metabolismo
15.
FASEB J ; 32(4): 1778-1793, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29162702

RESUMO

The acetylcholine-activated inward rectifier potassium current ( IKACh) is constitutively active in persistent atrial fibrillation (AF). We tested the hypothesis that the blocking of IKACh with the small molecule chloroquine terminates persistent AF. We used a sheep model of tachypacing-induced, persistent AF, molecular modeling, electrophysiology, and structural biology approaches. The 50% inhibition/inhibitory concentration of IKACh block with chloroquine, measured by patch clamp, was 1 µM. In optical mapping of sheep hearts with persistent AF, 1 µM chloroquine restored sinus rhythm. Molecular modeling suggested that chloroquine blocked the passage of a hydrated potassium ion through the intracellular domain of Kir3.1 (a molecular correlate of IKACh) by interacting with residues D260 and F255, in proximity to I228, Q227, and L299. 1H 15N heteronuclear single-quantum correlation of purified Kir3.1 intracellular domain confirmed the modeling results. F255, I228, Q227, and L299 underwent significant chemical-shift perturbations upon drug binding. We then crystallized and solved a 2.5 Å X-ray structure of Kir3.1 with F255A mutation. Modeling of chloroquine binding to the mutant channel suggested that the drug's binding to the pore becomes off centered, reducing its ability to block a hydrated potassium ion. Patch clamp validated the structural and modeling data, where the F255A and D260A mutations significantly reduced IKACh block by chloroquine. With the use of numerical and structural biology approaches, we elucidated the details of how a small molecule could block an ion channel and exert antiarrhythmic effects. Chloroquine binds the IKACh channel at a site formed by specific amino acids in the ion-permeation pathway, leading to decreased IKACh and the subsequent termination of AF.-Takemoto, Y., Slough, D. P., Meinke, G., Katnik, C., Graziano, Z. A., Chidipi, B., Reiser, M., Alhadidy, M. M., Ramirez, R., Salvador-Montañés, O., Ennis, S., Guerrero-Serna, G., Haburcak, M., Diehl, C., Cuevas, J., Jalife, J., Bohm, A., Lin,Y.-S., Noujaim, S. F. Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule.


Assuntos
Antiarrítmicos/farmacologia , Cloroquina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Frequência Cardíaca/efeitos dos fármacos , Simulação de Acoplamento Molecular , Bloqueadores dos Canais de Potássio/farmacologia , Substituição de Aminoácidos , Animais , Antiarrítmicos/química , Sítios de Ligação , Cloroquina/química , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Masculino , Bloqueadores dos Canais de Potássio/química , Ligação Proteica , Ovinos
16.
J Am Coll Cardiol ; 70(23): 2893-2905, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29216985

RESUMO

BACKGROUND: The aldosterone inhibitor eplerenone (EPL) has been shown to reduce the incidence of atrial fibrillation (AF) in patients with systolic heart failure, but the mechanism is unknown. OBJECTIVES: This study hypothesized that by reducing atrial dilation and fibrosis in the absence of heart failure, EPL also reduces AF burden and prevents AF perpetuation. METHODS: The authors conducted a randomized controlled study in 34 sheep that were atrially tachypaced (13 ± 1 week). They compared daily oral EPL (n = 19) versus sugar pill (SP) treatment (n = 15) from the start of tachypacing. The endpoint was a continuous 7-day stretch of persistent AF (n = 29) or completion of 23 weeks tachypacing (n = 5). RESULTS: EPL significantly reduced the rate of left atrial dilation increase during AF progression. Atria from EPL-treated sheep had less smooth muscle actin protein, collagen-III expression, interstitial atrial fibrosis, and cell hypertrophy than SP-treated sheep atria did. However, EPL did not modify the AF-induced increase in the rate of dominant frequency and ion channel densities seen under SP treatment, but rather prolonged the time to persistent AF in 26% of animals. It also reduced the degree of fibrillatory conduction, AF inducibility, and AF burden. CONCLUSIONS: In the sheep model, EPL mitigates fibrosis and atrial dilation, modifies AF inducibility and AF complexity, and prolongs the transition to persistent AF in 26% of animals, but it does not prevent AF-induced electrical remodeling or AF persistence. The results highlight structural remodeling as a central upstream target to reduce AF burden, and the need to prevent electrical remodeling to avert AF perpetuation.


Assuntos
Fibrilação Atrial/prevenção & controle , Remodelamento Atrial/efeitos dos fármacos , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Espironolactona/análogos & derivados , Animais , Fibrilação Atrial/patologia , Estimulação Cardíaca Artificial , Eplerenona , Fibrose , Masculino , Ovinos , Espironolactona/uso terapêutico
17.
Sci Rep ; 7(1): 13834, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061979

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) offer a novel in vitro platform for pre-clinical cardiotoxicity and pro-arrhythmia screening of drugs in development. To date hiPSC-CMs used for cardiotoxicity testing display an immature, fetal-like cardiomyocyte structural and electrophysiological phenotype which has called into question the applicability of hiPSC-CM findings to the adult heart. The aim of the current work was to determine the effect of cardiomyocyte maturation state on hiPSC-CM drug responsiveness. To this end, here we developed a high content pro-arrhythmia screening platform consisting of either fetal-like or mature hiPSC-CM monolayers. Compounds tested in the screen were selected based on the pro-arrhythmia risk classification (Low risk, Intermediate risk, or High risk) established recently by the FDA and major stakeholders in the Drug Discovery field for the validation of the Comprehensive In vitro Pro-Arrhythmia Assay (CiPA). Here we show that maturation state of hiPSC-CMs determines the absolute pro-arrhythmia risk score calculated for these compounds. Thus, the maturation state of hiPSC-CMs should be considered prior to pro-arrhythmia and cardiotoxicity screening in drug discovery programs.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Potenciais de Ação , Arritmias Cardíacas/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(3): E416-E425, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049825

RESUMO

Long QT syndrome (LQTS) exhibits great phenotype variability among family members carrying the same mutation, which can be partially attributed to genetic factors. We functionally analyzed the KCNH2 (encoding for Kv11.1 or hERG channels) and TBX20 (encoding for the transcription factor Tbx20) variants found by next-generation sequencing in two siblings with LQTS in a Spanish family of African ancestry. Affected relatives harbor a heterozygous mutation in KCNH2 that encodes for p.T152HfsX180 Kv11.1 (hERG). This peptide, by itself, failed to generate any current when transfected into Chinese hamster ovary (CHO) cells but, surprisingly, exerted "chaperone-like" effects over native hERG channels in both CHO cells and mouse atrial-derived HL-1 cells. Therefore, heterozygous transfection of native (WT) and p.T152HfsX180 hERG channels generated a current that was indistinguishable from that generated by WT channels alone. Some affected relatives also harbor the p.R311C mutation in Tbx20. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Tbx20 enhanced human KCNH2 gene expression and hERG currents (IhERG) and shortened action-potential duration (APD). However, Tbx20 did not modify the expression or activity of any other channel involved in ventricular repolarization. Conversely, p.R311C Tbx20 did not increase KCNH2 expression in hiPSC-CMs, which led to decreased IhERG and increased APD. Our results suggest that Tbx20 controls the expression of hERG channels responsible for the rapid component of the delayed rectifier current. On the contrary, p.R311C Tbx20 specifically disables the Tbx20 protranscriptional activity over KCNH2 Therefore, TBX20 can be considered a KCNH2-modifying gene.


Assuntos
Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Potenciais de Ação/genética , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Células CHO , Linhagem Celular , Cricetulus , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Masculino , Camundongos , Mutação/genética , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
19.
J Mol Cell Cardiol ; 99: 197-206, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27620334

RESUMO

AIMS: Mutations of cardiac sarcomere genes have been identified to cause HCM, but the molecular mechanisms that lead to cardiomyocyte hypertrophy and risk for sudden death are uncertain. The aim of this study was to examine HCM disease mechanisms at play during cardiac differentiation of human HCM specific pluripotent stem cells. METHODS AND RESULTS: We generated a human embryonic stem cell (hESC) line carrying a naturally occurring mutation of MYPBC3 (c.2905 +1 G >A) to study HCM pathogenesis during cardiac differentiation. HCM-specific hESC-derived cardiomyocytes (hESC-CMs) displayed hallmark aspects of HCM including sarcomere disarray, hypertrophy and impaired calcium impulse propagation. HCM hESC-CMs presented a transient haploinsufficiency of cMyBP-C during cardiomyocyte differentiation, but by day 30 post-differentiation cMyBP-C levels were similar to control hESC-CMs. Gene transfer of full-length MYBPC3 during differentiation prevented hypertrophy, sarcomere disarray and improved calcium impulse propagation in HCM hESC-CMs. CONCLUSION(S): These findings point to the critical role of MYBPC3 during sarcomere assembly in cardiac myocyte differentiation and suggest developmental influences of MYBPC3 truncating mutations on the mature hypertrophic phenotype.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/patologia , Análise Mutacional de DNA , Expressão Gênica , Humanos , Cariótipo , Organogênese , Fenótipo , Sarcômeros/metabolismo , Transcrição Gênica , Transdução Genética
20.
JACC Basic Transl Sci ; 1(3): 143-154, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27525318

RESUMO

OBJECTIVES: To determine whether Gal-3 mediates sustained atrial fibrillation (AF)-induced atrial structural and electrical remodeling and contributes to AF perpetuation. BACKGROUND: Galectin-3 (Gal-3) mediates extracellular matrix remodeling in heart failure, but its role in AF progression remains unexplored. METHODS: We examined intracardiac blood samples from patients with AF (N=55) to identify potential biomarkers of AF recurrence. In a sheep model of tachypacing-induced AF (N=20), we tested the effects of Gal-3 inhibition during AF progression. RESULTS: In patients, intracardiac serum Gal-3 levels were greater in persistent than paroxysmal AF and independently predicted atrial tachyarrhythmia recurrences after a single ablation procedure. In the sheep model, both Gal-3 and TGF-ß1 were elevated in the atria of persistent AF animals. The Gal-3 inhibitor GM-CT-01 (GMCT) reduced both Gal-3 and TGF-ß1-induced sheep atrial fibroblast migration and proliferation in vitro. GMCT (12 mg/kg twice/week) prevented the increase in serum procollagen type III N-terminal peptide seen during progression to persistent AF, and also mitigated atrial dilatation, myocyte hypertrophy, fibrosis, and the expected increase in dominant frequency of excitation. Atria of GMCT-treated animals had significantly less TGF-ß1-Smad2/3 signaling pathway activation and expression of α-smooth muscle actin and collagen than saline-treated animals. Ex-vivo hearts from GMCT-treated animals had significantly longer action potential durations and fewer rotors and wavebreaks during AF, and myocytes had lower functional expression of inward rectifier K+ channel (Kir2.3) than saline-treated animals. Importantly, GMCT increased the probability of spontaneous AF termination, decreased AF inducibility and reduced overall AF burden. CONCLUSIONS: Inhibiting Gal-3 during AF progression might be useful as an adjuvant treatment to improve outcomes of catheter ablation for persistent AF. Gal-3 inhibition may be a potential new upstream therapy for prevention of AF progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA