Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(2): e0227940, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027657

RESUMO

Tumor necrosis factor alpha (TNF) is capable of inducing regression of solid tumors. However, TNF released in response to Toll-like receptor 4 (TLR4) activation by bacterial lipopolysaccharide (LPS) is the key mediator of cytokine storm and septic shock that can cause severe tissue damage limiting anticancer applications of this cytokine. In our previous studies, we demonstrated that activation of another Toll-like receptor, TLR5, could protect from tissue damage caused by a variety of stresses including radiation, chemotherapy, Fas-activating antibody and ischemia-reperfusion. In this study, we tested whether entolimod could counteract TNF-induced toxicity in mouse models. We found that entolimod pretreatment effectively protects livers and lungs from LPS- and TNF-induced toxicity and prevents mortality caused by combining either of these agents with the sensitizer, D-galactosamine. While LPS and TNF induced significant activation of apoptotic caspase 3/7, lipid tissue peroxidation and serum ALT accumulation in mice without entolimod treatment, these indicators of toxicity were reduced by entolimod pretreatment to the levels of untreated control mice. Entolimod was effective when injected 0.5-48 hours prior to, but not when injected simultaneously or after LPS or TNF. Using chimeric mice with hematopoiesis differing in its TLR5 status from the rest of tissues, we showed that this protective activity was dependent on TLR5 expression by non-hematopoietic cells. Gene expression analysis identified multiple genes upregulated by entolimod in the liver and cultured hepatocytes as possible mediators of its protective activity. Entolimod did not interfere with the antitumor activity of TNF in mouse hepatocellular and colorectal tumor models. These results support further development of TLR5 agonists to increase tissue resistance to cytotoxic cytokines, reduce the risk of septic shock and enable safe systemic application of TNF as an anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Peptídeos/farmacologia , Receptor 5 Toll-Like/agonistas , Fator de Necrose Tumoral alfa/toxicidade , Animais , Linhagem Celular Tumoral , Células Cultivadas , Galactosamina , Hematopoese/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Análise de Sobrevida , Receptor 5 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
2.
Neuro Oncol ; 19(2): 186-196, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27370399

RESUMO

Background: The survival rate for patients with glioblastoma (GBM) remains dismal. New therapies targeting molecular pathways dysregulated in GBM are needed. One such clinical-stage drug candidate, CBL0137, is a curaxin, small molecules which simultaneously downregulate nuclear factor-kappaB (NF-ĸB) and activate p53 by inactivating the chromatin remodeling complex, Facilitates Chromatin Transcription (FACT). Methods: We used publicly available databases to establish levels of FACT subunit expression in GBM. In vitro, we evaluated the toxicity and effect of CBL0137 on FACT, p53, and NF-ĸB on U87MG and A1207 human GBM cells. In vivo, we implanted the cells orthotopically in nude mice and administered CBL0137 in various dosing regimens to assess brain and tumor accumulation of CBL0137, its effect on tumor cell proliferation and apoptosis, and on survival of mice with and without temozolomide (TMZ). Results: FACT subunit expression was elevated in GBM compared with normal brain. CBL0137 induced loss of chromatin-unbound FACT, activated p53, inhibited NF-ĸB-dependent transcription, and was toxic to GBM cells. The drug penetrated the blood-brain barrier and accumulated in orthotopic tumors significantly more than normal brain tissue. It increased apoptosis and suppressed proliferation in both U87MG and A1207 tumors. Intravenous administration of CBL0137 significantly increased survival in models of early- through late-stage TMZ-responsive and -resistant GBM, with a trend toward significantly increasing the effect of TMZ in TMZ-responsive U87MG tumors. Conclusion: CBL0137 targets GBM according to its proposed mechanism of action, crosses the blood-brain barrier, and is efficacious in both TMZ-responsive and -resistant orthotopic models, making it an attractive new therapy for GBM.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Carbazóis/uso terapêutico , Proteínas de Ligação a DNA/antagonistas & inibidores , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Fatores de Elongação da Transcrição/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Dacarbazina/farmacologia , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Temozolomida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Res ; 76(22): 6620-6630, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27680682

RESUMO

Isolated limb perfusion (ILP) with the chemotherapeutic agent melphalan is an effective treatment option for extremity in-transit melanoma but is toxic and technically challenging to deliver locoregionally. CBL0137 is an experimental clinical drug with broad anticancer activity in animal models, owing to its ability to bind DNA in a nongenotoxic manner and inactivate the FACT chromatin modulator essential for tumor cell viability. Here, we report that CBL0137 delivered by ILP in a murine melanoma model is as efficacious as melphalan, displaying antitumor activity at doses corresponding to only a fraction of the systemic MTD of CBL0137. The ability to bind DNA quickly combined with a favorable safety profile made it possible to substitute CBL0137 in the ILP protocol, using an intra-arterial infusion method, to safely achieve effective tumor suppression. Our findings of a preclinical proof of concept for CBL0137 and its administration via intra-arterial infusion as a superior treatment compared with melphalan ILP allows for locoregional treatment anywhere a catheter can be placed. Cancer Res; 76(22); 6620-30. ©2016 AACR.


Assuntos
Extremidades/patologia , Bombas de Infusão , Melanoma/tratamento farmacológico , Animais , Feminino , Humanos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Estudos de Validação como Assunto
4.
Sci Transl Med ; 7(312): 312ra176, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26537256

RESUMO

Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. We used a MYC target gene signature that predicts poor neuroblastoma prognosis to identify the histone chaperone FACT (facilitates chromatin transcription) as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small-molecule curaxin compound CBL0137 markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with standard chemotherapy by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN-amplified neuroblastoma cells and suggesting a treatment strategy for MYCN-driven neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Neoplasias do Sistema Nervoso/tratamento farmacológico , Neoplasias do Sistema Nervoso/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Elongação da Transcrição/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Carbazóis/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Fatores de Elongação da Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(20): E1857-66, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630282

RESUMO

Vertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative. This identified the liver and gastrointestinal tract as primary CBLB502 target organs. In particular, liver hepatocytes were the main cell type directly and specifically responding to systemic administration of CBLB502 but not to that of the TLR4 agonist LPS. To assess CBLB502 impact on other pathways, we created multireporter mice with hepatocytes transduced in vivo with reporters for 46 inducible transcription factor families and found that along with NF-κB, CBLB502 strongly activated STAT3-, phenobarbital-responsive enhancer module (PREM), and activator protein 1 (AP-1-) -driven pathways. Livers of CBLB502-treated mice displayed induction of numerous immunomodulatory factors and massive recruitment of various types of immune cells. This led to inhibition of growth of liver metastases of multiple tumors regardless of their TLR5 status. The changed liver microenvironment was not, however, hepatotoxic, because CBLB502 induced resistance to Fas-mediated apoptosis in normal liver cells. Temporary occlusion of liver blood circulation prevented CBLB502 from protecting hematopoietic progenitors in lethally irradiated mice, indicating involvement of a factor secreted by responding liver cells. These results define the liver as the key mediator of TLR5-dependent effects in vivo and suggest clinical applications for TLR5 agonists as hepatoprotective and antimetastatic agents.


Assuntos
Fígado/metabolismo , Peptídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Receptor 5 Toll-Like/agonistas , Animais , Anticarcinógenos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Feminino , Citometria de Fluxo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transplante de Neoplasias , Neutrófilos/metabolismo , Protetores contra Radiação/farmacologia , Transdução de Sinais , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA