Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559181

RESUMO

Single-cell technologies offer a unique opportunity to explore cellular heterogeneity in hematopoiesis, reveal malignant hematopoietic cells with clinically significant features and measure gene signatures linked to pathological pathways. However, reliable identification of cell types is a crucial bottleneck in single-cell analysis. Available databases contain dissimilar nomenclature and non-concurrent marker sets, leading to inconsistent annotations and poor interpretability. Furthermore, current tools focus mostly on physiological cell types, lacking extensive applicability in disease. We developed the Cell Marker Accordion, a user-friendly platform for the automatic annotation and biological interpretation of single-cell populations based on consistency weighted markers. We validated our approach on peripheral blood and bone marrow single-cell datasets, using surface markers and expert-based annotation as the ground truth. In all cases, we significantly improved the accuracy in identifying cell types with respect to any single source database. Moreover, the Cell Marker Accordion can identify disease-critical cells and pathological processes, extracting potential biomarkers in a wide variety of contexts in human and murine single-cell datasets. It characterizes leukemia stem cell subtypes, including therapy-resistant cells in acute myeloid leukemia patients; it identifies malignant plasma cells in multiple myeloma samples; it dissects cell type alterations in splicing factor-mutant cells from myelodysplastic syndrome patients; it discovers activation of innate immunity pathways in bone marrow from mice treated with METTL3 inhibitors. The breadth of these applications elevates the Cell Marker Accordion as a flexible, faithful and standardized tool to annotate and interpret hematopoietic populations in single-cell datasets focused on the study of hematopoietic development and disease.

2.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060328

RESUMO

Acute myeloid leukemia (AML) presents a pressing medical need in that it is largely resistant to standard chemotherapy as well as modern therapeutics, such as targeted therapy and immunotherapy, including anti-programmed cell death protein (anti-PD) therapy. We demonstrate that programmed death-1 homolog (PD-1H), an immune coinhibitory molecule, is highly expressed in blasts from the bone marrow of AML patients, while normal myeloid cell subsets and T cells express PD-1H. In studies employing syngeneic and humanized AML mouse models, overexpression of PD-1H promoted the growth of AML cells, mainly by evading T cell-mediated immune responses. Importantly, ablation of AML cell-surface PD-1H by antibody blockade or genetic knockout significantly inhibited AML progression by promoting T cell activity. In addition, the genetic deletion of PD-1H from host normal myeloid cells inhibited AML progression, and the combination of PD-1H blockade with anti-PD therapy conferred a synergistic antileukemia effect. Our findings provide the basis for PD-1H as a potential therapeutic target for treating human AML.


Assuntos
Evasão da Resposta Imune , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Medula Óssea , Imunidade Celular , Imunoterapia , Leucemia Mieloide Aguda/tratamento farmacológico
3.
Ann Hematol ; 103(1): 105-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036712

RESUMO

Patients with myelodysplastic syndromes/neoplasms (MDS) or acute myeloid leukemia (AML) with hypomethylating agent failure have a poor prognosis. Myeloid-derived suppressor cells (MDSCs) can contribute to MDS progression and mediate resistance to anti-PD1 therapy. As histone deacetylase inhibitors (HDACi) decrease MDSCs in preclinical models, we conducted an investigator-initiated, NCI-Cancer Therapy Evaluation Program-sponsored, multicenter, dose escalation, and expansion phase Ib trial (NCT02936752) of the HDACi entinostat and the anti-PD1 antibody pembrolizumab. Twenty-eight patients (25 MDS and 3 AML) were enrolled. During dose escalation (n=13 patients), there was one dose-limiting toxicity (DLT) on dose level (DL) 1 (G5 pneumonia/bronchoalveolar hemorrhage) and two DLTs at DL 2 (G3 pharyngeal mucositis and G3 anorexia). Per the 3 + 3 dose escalation design, DL 1 (entinostat 8 mg PO days 1 and 15 + pembrolizumab 200 mg IV day 1 every 21 days) was expanded and another 15 patients were enrolled. Hematologic adverse events (AEs) were common. The most common non-hematologic ≥G3 AEs were infection (32%), hypoxia/respiratory failure (11%), and dyspnea (11%). There were no protocol-defined responses among the 28 patients enrolled. Two patients achieved a marrow complete remission (mCR). Using a systems immunology approach with mass cytometry and machine learning analysis, mCR patients had increased classical monocytes and macrophages but there was no significant change of MDSCs. In conclusion, combining entinostat with pembrolizumab in patients with advanced MDS and AML was associated with limited clinical efficacy and substantial toxicity. Absence of an effect on MDSCs could be a potential explanation for the limited efficacy of this combination. ClinicalTrial.gov Identifier: NCT02936752.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Inibidores de Histona Desacetilases/efeitos adversos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/etiologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
4.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961434

RESUMO

During the COVID-19 pandemic, hematopoietic stem cell transplant (HSCT) recipients faced an elevated mortality rate from SARS-CoV-2 infection, ranging between 10-40%. The SARS-CoV-2 mRNA vaccines are important tools in preventing severe disease, yet their efficacy in the post-transplant setting remains unclear, especially in patients subjected to myeloablative chemotherapy and immunosuppression. We evaluated the humoral and adaptive immune responses to the SARS-CoV-2 mRNA vaccination series in 42 HSCT recipients and 5 healthy controls. Peripheral blood mononuclear nuclear cells and serum were prospectively collected before and after each dose of the SARS-CoV-2 vaccine. Post-vaccination responses were assessed by measuring anti-spike IgG and nucleocapsid titers, and antigen specific T cell activity, before and after vaccination. In order to examine mechanisms behind a lack of response, pre-and post-vaccine samples were selected based on humoral and cellular responses for single-cell RNA sequencing with TCR and BCR sequencing. Our observations revealed that while all participants eventually mounted a humoral response, transplant recipients had defects in memory T cell populations that were associated with an absence of T cell response, some of which could be detected pre-vaccination.

5.
Cell Rep ; 42(10): 113163, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742191

RESUMO

N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.


Assuntos
Leucemia , RNA , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Metabolismo Energético , Células-Tronco Hematopoéticas/metabolismo , RNA/metabolismo , Estabilidade de RNA/genética
6.
Blood Rev ; 62: 101128, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704469

RESUMO

The guidelines for classification, prognostication, and response assessment of myelodysplastic syndromes/neoplasms (MDS) have all recently been updated. In this report on behalf of the International Consortium for MDS (icMDS) we summarize these developments. We first critically examine the updated World Health Organization (WHO) classification and the International Consensus Classification (ICC) of MDS. We then compare traditional and molecularly based risk MDS risk assessment tools. Lastly, we discuss limitations of criteria in measuring therapeutic benefit and highlight how the International Working Group (IWG) 2018 and 2023 response criteria addressed these deficiencies and are endorsed by the icMDS. We also address the importance of patient centered care by discussing the value of quality-of-life assessment. We hope that the reader of this review will have a better understanding of how to classify MDS, predict clinical outcomes and evaluate therapeutic outcomes.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Humanos , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Medição de Risco , Qualidade de Vida , Prognóstico
7.
Small Methods ; 7(10): e2300594, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37312418

RESUMO

How to develop highly informative serology assays to evaluate the quality of immune protection against coronavirus disease-19 (COVID-19) has been a global pursuit over the past years. Here, a microfluidic high-plex immuno-serolomic assay is developed to simultaneously measure50 plasma or serum samples for50 soluble markers including 35proteins, 11 anti-spike/receptor binding domian (RBD) IgG antibodies spanningmajor variants, and controls. This assay demonstrates the quintuplicate test in a single run with high throughput, low sample volume, high reproducibilityand accuracy. It is applied to the measurement of 1012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein analysis reveals distinct immune mediator modules that exhibit a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies or receiving B cell depletion therapy. Serological analysis identifies that COVID-infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which can be associated with limited clonotype diversity and functional deficiency in B cells. These findings underscore the importance to individualize immunization strategies for these high-risk patients and provide an informative tool to monitor their responses at the systems level.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas , Humanos , COVID-19/prevenção & controle , Microfluídica , Imunoglobulina G
8.
Blood Rev ; 60: 101072, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36934059

RESUMO

Biological events that contribute to the pathogenesis of myelodysplastic syndromes/neoplasms (MDS) are becoming increasingly characterized and are being translated into rationally designed therapeutic strategies. Herein, we provide updates from the first International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS) detailing recent advances in understanding the genetic landscape of MDS, including germline predisposition, epigenetic and immune dysregulation, the complexities of clonal hematopoiesis progression to MDS, as well as novel animal models of the disease. Connected to this progress is the development of novel therapies targeting specific molecular alterations, the innate immune system, and immune checkpoint inhibitors. While some of these agents have entered clinical trials (e.g., splicing modulators, IRAK1/4 inhibitors, anti-CD47 and anti-TIM3 antibodies, and cellular therapies), none have been approved for MDS. Additional preclinical and clinical work is needed to develop a truly individualized approach to the care of MDS patients.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Animais , Humanos , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/terapia , Epigenômica , Terapia Baseada em Transplante de Células e Tecidos , Processamento de Proteína Pós-Traducional
9.
Curr Opin Hematol ; 30(2): 29, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752625
10.
Nat Biotechnol ; 41(10): 1405-1409, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36823353

RESUMO

In this study, we extended co-indexing of transcriptomes and epitopes (CITE) to the spatial dimension and demonstrated high-plex protein and whole transcriptome co-mapping. We profiled 189 proteins and whole transcriptome in multiple mouse tissue types with spatial CITE sequencing and then further applied the method to measure 273 proteins and transcriptome in human tissues, revealing spatially distinct germinal center reactions in tonsil and early immune activation in skin at the Coronavirus Disease 2019 mRNA vaccine injection site.


Assuntos
Análise de Célula Única , Transcriptoma , Animais , Camundongos , Humanos , Transcriptoma/genética , Epitopos , RNA Mensageiro , Perfilação da Expressão Gênica/métodos
11.
Curr Opin Hematol ; 30(2): 70-77, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602939

RESUMO

PURPOSE OF REVIEW: The aim of this study was to provide insight into how novel next-generation sequencing (NGS) techniques are set to revolutionize clinical practice. RECENT FINDINGS: Advances in sequencing technologies have focused on improved capture of mutations and reads and cellular resolution. Both short and long read DNA sequencing technology are being refined and combined in novel ways with other multiomic approaches to gain unprecedented biological insight into disease. Single-cell (sc)DNA-seq and integrated scDNA-seq with immunophenotyping provide granular information on disease composition such as clonal hierarchy, co-mutation status, zygosity, clonal diversity and genotype phenotype correlations. These and other techniques can identify rare cell populations providing the opportunity for increased sensitivity in measurable residual disease monitoring and precise characterization of residual clones permitting distinction of leukemic from pre/nonmalignant clones. SUMMARY: Increasing genetics-based mechanistic insights and classification of myeloid diseases along with a decrease in the cost of high-throughput NGS mean novel sequencing technologies are closer to being a reality in standard clinical practice. These technologies are poised to improve diagnostics, our ability to monitor treatment response and minimal residual disease and allow the study of premalignant conditions such as clonal haematopoiesis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA/métodos , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos de Associação Genética
14.
Haematologica ; 108(2): 522-531, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979721

RESUMO

Treatment for myelodysplastic syndromes (MDS) remains insufficient due to clonal heterogeneity and lack of effective clinical therapies. Dysregulation of apoptosis is observed across MDS subtypes regardless of mutations and represents an attractive therapeutic opportunity. Venetoclax (VEN), a selective inhibitor of anti-apoptotic protein B-cell lymphoma- 2 (BCL2), has yielded impressive responses in older patients with acute myeloid leukemia (AML) and high risk MDS. BCL2 family anti-apoptotic proteins BCL-XL and induced myeloid cell leukemia 1 (MCL1) are implicated in leukemia survival, and upregulation of MCL1 is seen in VEN-resistant AML and MDS. We determined in vitro sensitivity of MDS patient samples to selective inhibitors of BCL2, BCL-XL and MCL1. While VEN response positively correlated with MDS with excess blasts, all MDS subtypes responded to MCL1 inhibition. Treatment with combined VEN + MCL1 inhibtion was synergistic in all MDS subtypes without significant injury to normal hematopoiesis and reduced MDS engraftment in MISTRG6 mice, supporting the pursuit of clinical trials with combined BCL2 + MCL1 inhibition in MDS.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Linhagem Celular Tumoral
15.
Cell Rep ; 41(11): 111797, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516754

RESUMO

Persistent neutrophil-dominated lung inflammation contributes to lung damage in cystic fibrosis (CF). However, the mechanisms that drive persistent lung neutrophilia and tissue deterioration in CF are not well characterized. Starting from the observation that, in patients with CF, c-c motif chemokine receptor 2 (CCR2)+ monocytes/macrophages are abundant in the lungs, we investigate the interplay between monocytes/macrophages and neutrophils in perpetuating lung tissue damage in CF. Here we show that CCR2+ monocytes in murine CF lungs drive pathogenic transforming growth factor ß (TGF-ß) signaling and sustain a pro-inflammatory environment by facilitating neutrophil recruitment. Targeting CCR2 to lower the numbers of monocytes in CF lungs ameliorates neutrophil inflammation and pathogenic TGF-ß signaling and prevents lung tissue damage. This study identifies CCR2+ monocytes as a neglected contributor to the pathogenesis of CF lung disease and as a therapeutic target for patients with CF, for whom lung hyperinflammation and tissue damage remain an issue despite recent advances in CF transmembrane conductance regulator (CFTR)-specific therapeutic agents.


Assuntos
Fibrose Cística , Pneumonia , Humanos , Camundongos , Animais , Fibrose Cística/patologia , Monócitos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística , Pneumonia/patologia , Pulmão/patologia , Inflamação/patologia , Receptores de Quimiocinas/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(43): e2121077119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269862

RESUMO

Mice with a functional human immune system serve as an invaluable tool to study the development and function of the human immune system in vivo. A major technological limitation of all current humanized mouse models is the lack of mature and functional human neutrophils in circulation and tissues. To overcome this, we generated a humanized mouse model named MISTRGGR, in which the mouse granulocyte colony-stimulating factor (G-CSF) was replaced with human G-CSF and the mouse G-CSF receptor gene was deleted in existing MISTRG mice. By targeting the G-CSF cytokine-receptor axis, we dramatically improved the reconstitution of mature circulating and tissue-infiltrating human neutrophils in MISTRGGR mice. Moreover, these functional human neutrophils in MISTRGGR are recruited upon inflammatory and infectious challenges and help reduce bacterial burden. MISTRGGR mice represent a unique mouse model that finally permits the study of human neutrophils in health and disease.


Assuntos
Neutrófilos , Receptores de Fator Estimulador de Colônias de Granulócitos , Humanos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos/genética , Citocinas
18.
Genome Res ; 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109149

RESUMO

Argonaute 2 (AGO2) is a ubiquitously expressed protein critical for regulation of mRNA translation and vital to animal development. AGO2 protein is found in both cytoplasmic and nuclear compartments, and although its cytoplasmic role is well studied, the biological relevance of nuclear AGO2 is unclear. Here, we address this problem in vivo using spermatogenic cells as a model. We find that AGO2 transiently binds both chromatin and nucleus-specific mRNA transcripts of hundreds of genes required for sperm production during male meiosis in mice, and that germline conditional knockout (cKO) of Ago2 causes depletion of the encoded proteins. Correspondingly, Ago2 cKO males show abnormal sperm head morphology and reduced sperm count, along with reduced postnatal viability of offspring. Together, our data reveal an unexpected nuclear role for AGO2 in enhancing expression of developmentally important genes during mammalian male reproduction.

19.
bioRxiv ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36093346

RESUMO

The immune response to SARS-CoV-2 for patients with altered immunity such as hematologic malignancies and autoimmune disease may differ substantially from that in general population. These patients remain at high risk despite wide-spread adoption of vaccination. It is critical to examine the differences at the systems level between the general population and the patients with altered immunity in terms of immunologic and serological responses to COVID-19 infection and vaccination. Here, we developed a novel microfluidic chip for high-plex immuno-serological assay to simultaneously measure up to 50 plasma or serum samples for up to 50 soluble markers including 35 plasma proteins, 11 anti-spike/RBD IgG antibodies spanning all major variants, and controls. Our assay demonstrated the quintuplicate test in a single run with high throughput, low sample volume input, high reproducibility and high accuracy. It was applied to the measurement of 1,012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein association matrix analysis revealed distinct immune mediator protein modules that exhibited a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies and patients with autoimmune disorders receiving B cell depletion therapy. Serological analysis identified that COVID infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which could be associated with limited clonotype diversity and functional deficiency in B cells and was further confirmed by single-cell BCR and transcriptome sequencing. These findings underscore the importance to individualize immunization strategy for these high-risk patients and provide an informative tool to monitor their responses at the systems level.

20.
Nature ; 609(7926): 375-383, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978191

RESUMO

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Assuntos
Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem da Célula , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Epigenômica , Perfilação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Tonsila Palatina/citologia , Tonsila Palatina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA