Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1865(7): 184179, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244538

RESUMO

Myelin basic protein (MBP) is an intrinsically disordered protein and in the central nervous system (CNS) mainly responsible for connecting the cytoplasmic surfaces of the multilamellar, compact myelin. Increased posttranslational modification of MBP is linked to both, the natural development (from adolescent to adult brains) of myelin, and features of multiple sclerosis. Here, we study how a combination of this intrinsically disordered myelin protein with varying the natural cholesterol content may alter the characteristics of myelin-like membranes and interactions between these membranes. Large unilamellar vesicles (LUVs) with a composition mimicking the cytoplasmic leaflet of myelin were chosen as the model system, in which different parameters contributing to the interactions between the lipid membrane and MBP were investigated. While we use cryo-transmission electron microscopy (TEM) for imaging, dynamic light scattering (DLS) and electrophoretic measurements through continuously-monitored phase-analysis light scattering (cmPALS) were used for a more global overview of particle size and charge, and electron paramagnetic resonance (EPR) spectroscopy was utilized for local behavior of lipids in the vesicles' membranes in aqueous solution. The cholesterol content was varied from 060 % in these LUVs and measurements were performed in the presence and absence of MBP. We find that the composition of the lipid layers is relevant to the interaction with MBP. Not only the size, the shape and the aggregation behavior of the vesicles depend on the cholesterol content, but also within each membrane, cholesterol's freedom of movement, its environmental polarity and its distribution were found to depend on the content using the EPR-active spin-labeled cholesterol (CSOSL). In addition, DLS and EPR measurements probing the transition temperatures of the lipid phases allow a correlation of specific behavior with the human body temperature of 37 °C. Overall, our results aid in understanding the importance of the native cholesterol content in the healthy myelin membrane, which serves as the basis for stable and optimum protein-bilayer interactions. Although studied in this specific myelin-like system, from a more general and materials science-oriented point of view, we could establish how membrane and vesicle properties depend on cholesterol and/or MBP content, which might be useful generally when specific membrane and vesicle characteristics are sought for.


Assuntos
Proteína Básica da Mielina , Bainha de Mielina , Adulto , Humanos , Adolescente , Bainha de Mielina/metabolismo , Proteína Básica da Mielina/química , Lipossomas Unilamelares/química , Lipídeos , Colesterol/metabolismo
2.
Cell Rep ; 35(6): 109099, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979611

RESUMO

Neuronal loss in Parkinson's disease (PD) is associated with impaired proteostasis and accumulation of α-syn microaggregates in dopaminergic neurons. These microaggregates promote seeding of α-synuclein (α-syn) pathology between synaptically linked neurons. However, the mechanism by which seeding is initiated is not clear. Using human pluripotent stem cell (hPSC) models of PD that allow comparison of SNCA mutant cells with isogenic controls, we find that SNCA mutant neurons accumulate α-syn deposits that cluster to multiple endomembrane compartments, specifically multivesicular bodies (MVBs) and lysosomes. We demonstrate that A53T and E46K α-syn variants bind and sequester LC3B monomers into detergent-insoluble microaggregates on the surface of late endosomes, increasing α-syn excretion via exosomes and promoting seeding of α-syn from SNCA mutant neurons to wild-type (WT) isogenic controls. Finally, we show that constitutive inactivation of LC3B promotes α-syn accumulation and seeding, while LC3B activation inhibits these events, offering mechanistic insight into the spread of synucleinopathy in PD.


Assuntos
Exocitose/genética , Exossomos/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Diferenciação Celular , Humanos , Mutação , Doença de Parkinson/patologia , Transfecção
3.
Biomol NMR Assign ; 15(2): 297-303, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797711

RESUMO

Alpha-synuclein (α-syn) is a small presynaptic protein that is believed to play an important role in the pathogenesis of Parkinson's disease (PD). It localizes to presynaptic terminals where it partitions between a cytosolic soluble and a lipid-bound state. Recent evidence suggests that α-syn can also associate with mitochondrial membranes where it interacts with a unique anionic phospholipid cardiolipin (CL). Here, we examine the conformation of the flexible fragments of a monomeric α-syn bound to lipid vesicles composed of anionic 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids, of tetraoleoyl CL (TOCL) and DOPC, and of fibrils. The dynamic properties of α-syn associated with DOPA:DOPC vesicles were the most favorable for conducting three-dimensional NMR experiments, and the 13C, 15N and amide 1H chemical shifts of the flexible and disordered C-terminus of α-syn could be assigned using three-dimensional through-bond magic angle spinning NMR spectroscopy. Although the C-terminus is more dynamically constrained in fibrils and in α-syn bound to TOCL:DOPC vesicles, a direct comparison of carbon chemical shifts detected using through bond two-dimensional spectroscopy indicates that the C-terminus is flexible and unstructured in all the three samples.


Assuntos
alfa-Sinucleína
4.
Stem Cells ; 39(6): 776-786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33529418

RESUMO

Neural stem and progenitor cells (collectively termed neural precursor cells [NPCs]) are found along the ventricular neuraxis extending from the spinal cord to the forebrain in regionally distinct niches comprised of different cell types, architecture, and cell-cell interactions. An understanding of the factors that regulate NPC behavior is critical for developing therapeutics to repair the injured central nervous system. Herein, we demonstrate that myelin basic protein (MBP), the major cytoplasmic protein constituent of the myelin sheath in oligodendrocytes, can regulate NPC behavior. Under physiological conditions, NPCs are not in contact with intracellular MBP; however, upon injury, MBP is released into the neural parenchyma. We reveal that MBP presented in a spinal cord niche is inhibitory to NPC proliferation. This inhibitory effect is regionally distinct as spinal cord NPCs, but not forebrain-derived NPCs, are inhibited by MBP. We performed coculture and conditioned media experiments that reveal the stem cell niche is a key regulator of MBP's inhibitory actions on NPCs. The inhibition is mediated by a heat-labile protein released by spinal cord niche cells, but not forebrain niche cells. However, forebrain NPCs are also inhibited by the spinal cord derived factor as revealed following in vivo infusion of the spinal cord niche-derived conditioned media. Moreover, we show that MBP inhibits oligodendrogenesis from NPCs. Together, these findings highlight the role of MBP and the regionally distinct microenvironment in regulating NPC behavior which has important implications for stem cell-based regenerative strategies.


Assuntos
Diferenciação Celular/fisiologia , Proteína Básica da Mielina/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/citologia , Animais , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Bainha de Mielina/metabolismo , Medula Espinal/metabolismo
5.
Cells ; 9(3)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106542

RESUMO

Myelin basic protein (MBP) is located in the insulating covers of nerve cells in the brain and spinal cord. By interacting with lipid membranes, it is responsible for compaction of the myelin sheath in the central nervous system, which is weakened in demyelinating diseases. The lipid composition of the myelin leaflet has a high impact on the interaction between the membrane and MBP. Cholesterol is present in the cytoplasmic leaflet with a rather high amount of 44% (mol%). In this study, the focus is on the effect of cholesterol, mainly by varying its content, on the interaction of MBP with a lipid monolayer. Therefore, Langmuir lipid monolayers mimicking the cytoplasmic membrane of myelin and monolayers with variations of cholesterol content between 0% and 100% were measured at the air/water interface with additional imaging by fluorescence microscopy. All experiments were performed with and without bovine MBP to study the dependence of the interaction of the protein with the monolayers on the cholesterol content. The native amount of 44% cholesterol in the monolayer combines optima in the order of the monolayer (presumably correlating to compaction and thermodynamic stability) and protein interaction and shows unique features in comparison to lower or higher cholesterol contents.


Assuntos
Colesterol/metabolismo , Lipídeos/fisiologia , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/fisiologia , Animais , Humanos , Suínos
6.
Biochim Biophys Acta Biomembr ; 1862(2): 183077, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805269

RESUMO

Multiple sclerosis (MS) is correlated with increased deimination of myelin basic protein (MBP) in the central nervous system. Here, the interaction of MBP C1 (charge: +19) and MBP C8 (charge: +13) with the major lipids of the cytoplasmic side of the oligodendrocyte membrane is analysed using monolayer adsorption experiments and epifluorescence microscopy. Our findings show that the electrostatic attraction between the positively charged proteins and negatively charged lipids in the myelin-like monolayers competes with the incorporation of MBP into regions directly bordering cholesterol-rich domains. The latter is favoured to avoid additional lipid condensation and reduction in fluidity of the phospholipid layer. We find that MBP C1 does not incorporate at the cholesterol-rich domains if sphingomyelin (SM) is absent from the lipid composition. In contrast, MBP C8 is still incorporated near cholesterol-enriched regions without SM. Thus, the highly charged C1 variant needs a specific interaction with SM, whereas for C8 the incorporation at the cholesterol-rich regions is ensured due to its reduced net positive charge. This phenomenon may be relevant for the correlation of higher amounts of MBP C8 in brains of adult MS patients and healthy children, in which the amount of SM is reduced compared to healthy adults.


Assuntos
Proteína Básica da Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Esfingomielinas/metabolismo , Lipossomas Unilamelares/metabolismo , Adulto , Criança , Colesterol/metabolismo , Humanos , Íons , Modelos Biológicos , Proteína Básica da Mielina/química , Oligodendroglia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Eletricidade Estática
7.
Langmuir ; 34(21): 6095-6108, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29722987

RESUMO

Interaction of myelin basic protein (MBP) and the cytoplasmic leaflets of the oligodendrocyte membrane is essential for the formation and compaction of the myelin sheath of the central nervous system and is altered aberrantly and implicated in the pathogenesis of neurodegenerative diseases like multiple sclerosis. To gain more detailed insights into this interaction, the adsorption of MBP to model lipid monolayers of similar composition to the myelin of the central nervous system was studied at the air-water interface with monolayer adsorption experiments. Measuring the surface pressure and the related maximum insertion pressure of MBP for different myelin-like lipid monolayers provided information about the specific role of each of the single lipids in the myelin. Depending on the ratio of negatively charged lipids to uncharged lipids and the distance between charges, the adsorption process was found to be determined by two counteracting effects: (i) protein incorporation, resulting in an increasing surface pressure and (ii) lipid condensation due to electrostatic interaction between the positively charged protein and negatively charged lipids, resulting in a decreasing surface pressure. Although electrostatic interactions led to high insertion pressures, the associated lipid condensation lowered the fluidity of the myelin-like monolayer.


Assuntos
Ar , Lipídeos/química , Proteína Básica da Mielina/metabolismo , Água/química , Adsorção , Bainha de Mielina/metabolismo , Eletricidade Estática
8.
Nat Commun ; 9(1): 817, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483518

RESUMO

Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function and impaired proteostasis. Identifying the mechanisms that link these pathologies is critical to furthering our understanding of PD pathogenesis. Using human pluripotent stem cells (hPSCs) that allow comparison of cells expressing mutant SNCA (encoding α-synuclein (α-syn)) with isogenic controls, or SNCA-transgenic mice, we show that SNCA-mutant neurons display fragmented mitochondria and accumulate α-syn deposits that cluster to mitochondrial membranes in response to exposure of cardiolipin on the mitochondrial surface. Whereas exposed cardiolipin specifically binds to and facilitates refolding of α-syn fibrils, prolonged cardiolipin exposure in SNCA-mutants initiates recruitment of LC3 to the mitochondria and mitophagy. Moreover, we find that co-culture of SNCA-mutant neurons with their isogenic controls results in transmission of α-syn pathology coincident with mitochondrial pathology in control neurons. Transmission of pathology is effectively blocked using an anti-α-syn monoclonal antibody (mAb), consistent with cell-to-cell seeding of α-syn.


Assuntos
Cardiolipinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson Secundária/genética , alfa-Sinucleína/genética , Animais , Anticorpos Monoclonais/farmacologia , Comunicação Celular , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Mitofagia/efeitos dos fármacos , Mutação , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Dobramento de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , alfa-Sinucleína/metabolismo
9.
Free Radic Biol Med ; 112: 494-503, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28863941

RESUMO

There is a well-documented relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of the dilated veins in cerebral MS plaques. The source of this iron is unknown, but could be related to the recognized phenomenon of capillary and venous hemorrhages leading to blood extravasation. In turn, hemorrhaging leading to hemolysis results in extracellular release of hemoglobin, a reactive molecule that could induce local oxidative stress, inflammation, and tissue damage. Our previous studies with a reduced form of hemoglobin (oxyHb) have demonstrated its ability to cause extensive lipid and protein oxidation in vitro, which would result in membrane destabilization. Here, we investigated in further detail the mechanism by which the more abundant oxidized form of extracellular hemoglobin (metHb), and dissociated hemin, cause direct oxidative damage to myelin components, specifically membrane-mimetic lipid vesicles and myelin basic protein (MBP), a highly-abundant protein in the CNS. Oxidation of lipids was assessed by the formation of conjugated diene/triene and malondialdehyde, and oxidation of MBP was demonstrated by the bityrosine formation and by the change in protein mass. Our results show that metHb causes oxidative damage to MBP and myelin lipids, partly by transferring its hemin moiety to protein and lipid, but mostly as an intact protein possibly via formation of a ferryl radical. These results elucidating the mechanism of extracellular hemoglobin-induced oxidative damage to myelin components support the need for further research into vascular pathology in MS pathogenesis, to gain insight into the role of iron deposits and/or in stimulation of different comorbidities associated with the disease.


Assuntos
Hemoglobinas/química , Ferro/química , Proteína Básica da Mielina/química , Proteolipídeos/química , Lipossomas Unilamelares/química , Animais , Colesterol/química , Hemina/química , Humanos , Metemoglobina/química , Camundongos , Oxirredução , Estresse Oxidativo , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilinositóis/química , Fosfatidilserinas/química , Proteínas Recombinantes/química , Soluções , Esfingomielinas/química
10.
Proteomics ; 17(19)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28851044

RESUMO

The multilamellar membrane myelin sheath of the CNS, that enwraps axons to facilitate saltatory conduction in higher vertebrates, is held together by myelin basic protein (MBP). Yet this generalization masks how enigmatic MBP is, much like cosmological "dark matter." First, the casual use of the singular form for "protein" distracts that there are multiple, developmentally regulated "classic" splice isoforms ranging from 14 to 21.5 kDa, each with extensive PTMs. Second, the static image of MBP adhering two cytoplasmic leaflets of the oligodendrocyte membrane together in close apposition, suggests it to be inaccessible to modifying enzymes. And yet it is modified (to paraphrase Galileo's phrase on the earth's motion). In this issue of Proteomics, Sarg et al. apply an integrated CE-MS approach to investigate the PTMs of 18.5 kDa MBP from mouse brains of different ages. They identify new sites and types of modification, as well as confirming previously known PTMs. Innovative tools for unraveling the intricacies of the myelin basic proteome and how it organizes CNS myelin (much like basic histones organize chromatin), will help us understand white matter development and plasticity in health, during ageing, and in demyelinating diseases such as multiple sclerosis.


Assuntos
Proteína Básica da Mielina , Substância Branca , Animais , Eletroforese Capilar , Espectrometria de Massas , Camundongos , Bainha de Mielina
11.
Proteins ; 85(7): 1336-1350, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28380689

RESUMO

The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich""-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the ß-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the ß-sheets in Fyn-SH3 and proline-rich region of MBP. Proteins 2017; 85:1336-1350. © 2017 Wiley Periodicals, Inc.


Assuntos
Bicamadas Lipídicas/química , Proteína Básica da Mielina/química , Proteínas Proto-Oncogênicas c-fyn/química , Água/química , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dimiristoilfosfatidilcolina/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Prolina/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estrutura Terciária de Proteína , Termodinâmica , Unitiol/química
12.
Metab Brain Dis ; 32(1): 19-34, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807673

RESUMO

We have proposed that the myelin damage observed in multiple sclerosis (MS) may be partly mediated through the long-term release and degradation of extracellular hemoglobin (Hb) and the products of its oxidative degradation [Cellular and Molecular Life Sciences, 71, 1789-1798, 2014]. The protein haptoglobin (Hpt) binds extracellular Hb as a first line of defense, and can serve as a vascular antioxidant. Humans have two different Hpt alleles: Hpt1 and Hpt2, giving either homozygous Hpt1-1 or Hpt2-2 phenotypes, or a heterozygous Hpt1-2 phenotype. We questioned whether those geographic regions with higher frequency of the Hpt2 allele (conversely, lower frequency of Hpt1 allele) would correlate with an increased incidence of MS, because different Hpt phenotypes will have variable anti-oxidative potentials in protecting myelin from damage inflicted by extracellular Hb and its degradation products. To test this hypothesis, we undertook a systematic analysis of the literature on reported geographic distributions of Hpt alleles to compare them with data reported in the World Health Organization Atlas of worldwide MS prevalence. We found the frequency of the Hpt1 allele to be low in European and North American countries with a high prevalence of MS, consistent with our hypothesis. However, this correlation was not observed in China and India, countries with the lowest Hpt1 frequencies, yet low reported prevalence of MS. Nevertheless, this work shows the need for continued refinement of geographic patterns of MS prevalence, including data on ethnic or racial origin, and for new clinical studies to probe the observed correlation and evaluate Hpt phenotype as a predictor of disease variability and progression, severity, and/or comorbidity with cardiovascular disorders.


Assuntos
Alelos , Variação Genética , Haptoglobinas/genética , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Humanos , Prevalência
13.
Biochim Biophys Acta ; 1858(6): 1262-77, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26903219

RESUMO

Intrinsically-disordered proteins (IDPs) present a complex interplay of conformational variability and multifunctionality, modulated by environment and post-translational modifications. The 18.5-kDa myelin basic protein (MBP) is essential to the formation of the myelin sheath of the central nervous system and is exemplary in this regard. We have recently demonstrated that the unmodified MBP-C1 component undergoes co-operative global conformational changes in increasing concentrations of trifluoroethanol, emulating the decreasing dielectric environment that the protein encounters upon adsorption to the oligodendrocyte membrane [K.A. Vassall et al., Journal of Molecular Biology, 427, 1977-1992, 2015]. Here, we extended this study to the pseudo-deiminated MBP-C8 charge component, one found in greater proportion in developing myelin and in multiple sclerosis. A similar tri-conformational distribution as for MBP-C1 was observed with slight differences in Gibbs free energy. A more dramatic difference was observed by cathepsin D digestion of the protein in both aqueous and membrane environments, which showed significantly greater accessibility of the F42-F43 cut site of MBP-C8, indicative of a global conformational change. In contrast, this modification caused little change in the protein's density of packing on myelin-mimetic membranes as ascertained by double electron-electron resonance spectroscopy [D.R. Kattnig et al., Biochimica et Biophysica Acta (Biomembranes), 1818, 2636-2647, 2012], or in its affinity for Ca(2+)-CaM. Site-specific threonyl pseudo-phosphorylation at residues T92 and/or T95 did not appreciably affect any of the thermodynamic mechanisms of conformational transitions, susceptibility to cathepsin D, or affinity for Ca(2+)-CaM, despite previously having been shown to affect local structure and disposition on the membrane surface.


Assuntos
Iminas/metabolismo , Proteína Básica da Mielina/metabolismo , Adsorção , Sequência de Aminoácidos , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Dados de Sequência Molecular , Proteína Básica da Mielina/química , Fosforilação , Dobramento de Proteína , Proteólise , Espectrometria de Fluorescência , Lipossomas Unilamelares
14.
Biochem J ; 472(1): 17-32, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26518750

RESUMO

The classic isoforms of myelin basic protein (MBP, 14-21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Esclerose Múltipla/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Proteína Básica da Mielina/química , Oligodendroglia/metabolismo , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
15.
J Biomol NMR ; 63(4): 375-388, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26494649

RESUMO

Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies. We demonstrate this method on two proteins that exhibit different motional regimes. Myelin basic protein is an intrinsically-disordered, peripherally membrane-associated protein that is highly flexible, whereas Anabaena sensory rhodopsin is composed of seven rigid transmembrane α-helices connected by mobile loop regions. In both cases, we observe narrow proton linewidths and, on average, a 10× increase in sensitivity in 2D insensitive nuclear enhancement of polarization transfer-based HSQC experiments when proton detection is compared to carbon detection. We further show that our proton-detected experiments can be easily extended to three dimensions and used to build complete amino acid systems, including sidechain protons, and obtain inter-residue correlations. Additionally, we detect signals which do not correspond to amino acids, but rather to lipids and/or carbohydrates which interact strongly with membrane proteins.


Assuntos
Proteínas de Bactérias/química , Proteína Básica da Mielina/química , Rodopsina/química , Anabaena , Animais , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Prótons , Razão Sinal-Ruído
16.
Biochem Biophys Res Commun ; 461(1): 136-41, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25862371

RESUMO

The 18.5-kDa splice isoform of myelin basic protein (MBP) predominates in the adult brain, adhering the cytoplasmic leaflets of the oligodendrocyte membrane together, but also assembling the cytoskeleton at leading edges of membrane processes. Here, we characterized MBP's role as a microtubule-assembly protein (MAP). Using light scattering and sedimentation assays we found that pseudo-phosphorylation of Ser54 (murine 18.5-kDa sequence) significantly enhanced the rate but not the final degree of polymerization. This residue lies within a short KPGSG motif identical to one in tau, a ubiquitous MAP important in neuronal microtubule assembly. Using polypeptide constructs, each comprising one of three major amphipathic α-helical molecular recognition fragments of 18.5-kDa MBP, we identified the N-terminal α1-peptide as sufficient to cause microtubule polymerization, the rate of which was significantly enhanced in the presence of dodecylphosphocholine (DPC) micelles to mimic a lipidic environment.


Assuntos
Bicamadas Lipídicas/química , Proteínas dos Microtúbulos/química , Proteína Básica da Mielina/química , Neuroglia/química , Fosforilcolina/análogos & derivados , Tubulina (Proteína)/química , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Cinética , Dados de Sequência Molecular , Fosforilação , Fosforilcolina/química , Ligação Proteica
17.
J Mol Biol ; 427(10): 1977-92, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25816771

RESUMO

The intrinsically disordered, 18.5-kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that is essential to proper myelin formation in the central nervous system. MBP acts in oligodendrocytes both to adjoin membrane leaflets to each other in forming myelin and as a hub in numerous protein-protein and protein-membrane interaction networks. Like many intrinsically disordered proteins (IDPs), MBP multifunctionality arises from its high conformational plasticity and its ability to undergo reversible disorder-to-order transitions. One such transition is the disorder-to-α-helical conformational change that is induced upon MBP-membrane binding. Here, we have investigated the disorder-to-α-helical transition of MBP-derived α-peptides and the full-length 18.5-kDa protein. This transition was induced through titration of the membrane-mimetic solvent trifluoroethanol into both protein and peptide solutions, and conformational change was monitored using circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid binding, tryptophan fluorescence quenching, and Förster (fluorescence) resonance energy transfer measurements. The data suggest that the disorder-to-α-helical transition of MBP follows a 3-state model: disordered↔intermediate↔α-helical, with each of the identified equilibrium states likely representing a conformational ensemble. The disordered state is characterized by slight compaction with little regular secondary structure, whereas the intermediate is also disordered but globally more compact. Surprisingly, the α-helical conformation is less compact than the intermediate. This study suggests that multifunctionality in MBP could arise from differences in the population of energetically distinct ensembles under different conditions and also provides an example of an IDP that undergoes cooperative global conformation change.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Proteínas Mutantes/química , Proteína Básica da Mielina/química , Fragmentos de Peptídeos/química , Proteínas Recombinantes/química , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Termodinâmica
18.
Biochim Biophys Acta ; 1852(1): 92-103, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463632

RESUMO

There is a relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of dilated veins in MS plaques. The sources of this iron can be varied, but capillary and venous hemorrhages leading to blood extravasation have been recorded, and could result in the release of hemoglobin extracellularly. Extracellular hemoglobin oxidizes quickly and is known to become a reactive molecule that triggers low-density lipoprotein oxidation and plays a pivotal role in atherogenesis. In MS, it could lead to local oxidative stress, inflammation, and tissue damage. Here, we investigated whether extracellular hemoglobin and its breakdown products can cause direct oxidative damage to myelin components in a peroxidative environment such as occurs in inflamed tissue. Oxidation of lipids was assessed by the formation of fluorescent peroxidized lipid-protein covalent adducts, by the increase in conjugated diene and malondialdehyde. Oxidation of proteins was analyzed by the change in protein mass. The results suggest that the globin radical could be a trigger of myelin basic protein oxidative cross-linking, and that heme transferred to the lipids is involved in lipid peroxidation. This study provides new insight into the mechanism by which hemoglobin exerts its pathological oxidative activity towards myelin components. This work supports further research into the vascular pathology in MS, to gain insight into the origin and role of iron deposits in disease pathogenesis, or in stimulation of different comorbidities such as cardiovascular disease.


Assuntos
Hemoglobinas/metabolismo , Bainha de Mielina/metabolismo , Animais , Linhagem Celular Transformada , Espaço Extracelular/metabolismo , Técnicas In Vitro , Camundongos , Esclerose Múltipla/metabolismo , Oxirredução
19.
Biosci Rep ; 34(6): e00157, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25343306

RESUMO

The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92-R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP-Fyn-SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62-L68), and demonstrate further that residues (V83-P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn-SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.


Assuntos
Proteína Básica da Mielina/metabolismo , Prolina/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Linhagem Celular , Galinhas , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Proteína Básica da Mielina/química , Proteína Básica da Mielina/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Prolina/química , Prolina/genética , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/genética
20.
BMC Res Notes ; 7: 387, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24956930

RESUMO

BACKGROUND: The classic myelin basic protein (MBP) isoforms are intrinsically-disordered proteins of 14-21.5 kDa in size arising from the Golli (Gene in the Oligodendrocyte Lineage) gene complex, and are responsible for formation of the multilayered myelin sheath in the central nervous system. The predominant membrane-associated isoform of MBP is not simply a structural component of compact myelin but is highly post-translationally modified and multi-functional, having interactions with numerous proteins such as Ca2+-calmodulin, and with actin, tubulin, and proteins with SH3-domains, which it can tether to a lipid membrane in vitro. It co-localizes with such proteins in primary oligodendrocytes (OLGs) and in early developmental N19-OLGs transfected with fluorescently-tagged MBP. RESULTS: To provide further evidence for MBP associations with these proteins in vivo, we show here that MBP isoforms are co-immunoprecipitated from detergent extracts of primary OLGs together with actin, tubulin, zonula occludens 1 (ZO-1), cortactin, and Fyn kinase. We also carry out live-cell imaging of N19-OLGs co-transfected with fluorescent MBP and actin, and show that when actin filaments re-assemble after recovery from cytochalasin D treatment, MBP and actin are rapidly enriched and co-localized at certain sites at the plasma membrane and in newly-formed membrane ruffles. The MBP and actin distributions change similarly with time, suggesting a specific and dynamic association. CONCLUSIONS: These results provide more direct evidence for association of the predominant 18.5-kDa MBP isoform with these proteins in primary OLGs and in live cells than previously could be inferred from co-localization observations. This study supports further a role for classic MBP isoforms in protein-protein interactions during membrane and cytoskeletal extension and remodeling in OLGs.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteína Básica da Mielina/metabolismo , Oligodendroglia/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Western Blotting , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Cortactina/genética , Cortactina/metabolismo , Citocalasina D/farmacologia , Proteínas do Citoesqueleto/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Proteína Básica da Mielina/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Oligodendroglia/citologia , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos Wistar , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA