Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(25): 17491-17497, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38818364

RESUMO

A dual-signal optical sensing platform was successfully developed for the determination of ascorbic acid (AA) based on blue fluorescent carbon dots (CDs) and manganese dioxide nanosheets (MnO2 NSs) with strong Tyndall effect (TE) scattering and fluorescence quenching capabilities. In this nanosystem, CDs-MnO2 NS composites were employed as probes to evaluate the AA concentration. Owing to the strong reduction, the presence of the target AA could reduce the MnO2 NSs to Mn2+ and induce the degradation of the MnO2 NSs, resulting in a significant decrease in the TE scattering intensity of the MnO2 NSs and the fluorescence recovery of the CDs. Therefore, a novel optical sensor based on TE scattering and fluorescence dual detectors was developed for the sensitive determination of AA. Under optimized conditions, the limits of detection (LODs) of the two modes were 113 and 3 nM, respectively. Furthermore, the dual-signal optical sensing platform was successfully applied for the detection of AA in human serum.

2.
Nanoscale Adv ; 6(4): 1135-1144, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356627

RESUMO

High-purity, monodisperse, and low-oxygen submicron copper powder particles with particle sizes in the range of 100-600 nm were synthesized under alkaline conditions using ascorbic acid (C6H8O6) as a reductant and copper chloride (CuCl2·2H2O) as a copper source. The redox potential of the Cu-Cl-H2O system was obtained by calculations and plotted on pH-E diagrams, and a one-step secondary reduction process (Cu(ii) → CuCl(i) → Cu2O(i) → Cu(0)) was proposed to slow down the reaction rate. The commonalities and differences in the nucleation and growth process of copper powders under methionine (Met), hexadecyl trimethyl ammonium bromide (CTAB), and sodium citrate dihydrate (SSC) as protectants and without the addition of protectants are compared, and the reaction mechanism is discussed. Among them, methionine (Met) showed excellent properties and the Cu2O(i) → Cu(0) process was further observed by in situ XRD. The synthesized copper powder particles have higher particle size controllability, dispersibility, antioxidant properties, and stability, and can be decomposed at lower temperatures (<280 °C). The resistivity can reach 21.4 µΩ cm when sintered at a temperature of 325 °C for 30 min. This green and simple synthesis process facilitates industrialization and storage, and the performance meets the requirements of electronic pastes.

3.
Int J Biol Sci ; 20(1): 200-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164169

RESUMO

TGF-ß/Smad3 signaling plays a critical role in type 2 diabetes (T2D) and type 2 diabetic nephropathy (T2DN), but treatment by specifically targeting Smad3 remains unexplored. To develop a new Smad3-targeted therapy for T2D and T2DN, we treated db/db mice at the pre-diabetic or established diabetic stage with a pharmacological Smad3 inhibitor SIS3. The therapeutic effect and mechanisms of anti-Smad3 treatment on T2D and T2DN were investigated. We found that anti-Smad3 treatment on pre-diabetic db/db mice largely attenuated both T2D and T2DN by markedly reducing blood glucose levels, and inhibiting the elevated serum creatinine, microalbuminuria, and renal fibrosis and inflammation. Unexpectedly, although SIS3 treatment on the established diabetic db/db mice inhibited T2DN but did not significantly improve T2D. Mechanistically, we uncovered that inhibition of T2DN in SIS3-treated db/db mice was associated with effectively restoring the balance of TGF-ß/Smad signaling by inhibiting Smad3 while increasing Smad7, thereby suppressing Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation via lncRNA Erbb4-IR and LRN9884-dependent mechanisms. We also revealed that inhibition of islet ß cell injury by preventing the loss of islet Pax 6 could be the mechanism through which the pre-diabetic treatment, rather than the late SIS3 treatment on db/db mice significantly improved the T2D phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Estado Pré-Diabético , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Diabetes Mellitus Tipo 2/genética , Estado Pré-Diabético/complicações , Estado Pré-Diabético/patologia , Inflamação , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Proteína Smad3/genética , Proteína Smad3/metabolismo , Rim/patologia
4.
Environ Sci Pollut Res Int ; 31(4): 5116-5131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112872

RESUMO

Atrazine, a widely used herbicide in agriculture, is detrimental to both the ecological environment and human health owing to its extensive use, poor degradability, and biotoxicity. The technology commonly used to remove atrazine from water is activated carbon adsorption, but it has the problems of difficult recovery, secondary contamination, and a low removal rate. To efficiently remove atrazine from agricultural wastewater, in this study, a new environmental material, embedding immobilization (EI)-Co- and Zr-modified activated carbon powder (Co/Zr@AC), was prepared by immobilizing the bimetallic Co/Zr@AC via EI technique and employed to remove atrazine. When preparing EI-Co/Zr@AC, the single-factor experiment was conducted and determined the optimal preparation conditions: sodium alginate 2.5% (wt), calcium chloride 4.0% (wt), Co/Zr@AC 1.0% (wt), and bentonite 2.0% (wt). The prepared EI-Co/Zr@AC has a three-dimensional mesh structure and many pores and also possesses good mass transfer performance and mechanical properties. The removal efficiency by EI-Co/Zr@AC for the removal of 5.0 mg/L atrazine from 50 mL was 94.1% at pH 7.0 and 25°C, with an EI-Co/Zr@AC dosage of 0.8 g. The mechanistic study showed that the pseudo-second-order kinetic model could describe the removal process better than the pseudo-first-order kinetic model, and the Freundlich isotherm model fit better than other isotherm models. Additionally, the synthesized EI-Co/Zr@AC spheres demonstrated good reusability, with the atrazine removal rate remaining 70.4% after five cycles, and the mechanical properties of the spheres were stable.


Assuntos
Atrazina , Herbicidas , Poluentes Químicos da Água , Humanos , Atrazina/química , Carvão Vegetal/química , Bentonita , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
5.
Nat Commun ; 14(1): 7740, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007572

RESUMO

Gut microbiota plays a key role in insulin resistance (IR). Here we perform a case-control study of Chinese adults (ChiCTR2200065715) and identify that Parabacteroides distasonis is inversely correlated with IR. Treatment with P. distasonis improves IR, strengthens intestinal integrity, and reduces systemic inflammation in mice. We further demonstrate that P. distasonis-derived nicotinic acid (NA) is a vital bioactive molecule that fortifies intestinal barrier function via activating intestinal G-protein-coupled receptor 109a (GPR109a), leading to ameliorating IR. We also conduct a bioactive dietary fiber screening to induce P. distasonis growth. Dendrobium officinale polysaccharide (DOP) shows favorable growth-promoting effects on P. distasonis and protects against IR in mice simultaneously. Finally, the reduced P. distasonis and NA levels were also validated in another human type 2 diabetes mellitus cohort. These findings reveal the unique mechanisms of P. distasonis on IR and provide viable strategies for the treatment and prevention of IR by bioactive dietary fiber.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Humanos , Camundongos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fibras na Dieta
6.
Int J Biol Macromol ; 253(Pt 7): 127326, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37820907

RESUMO

Dietary fiber is crucial for human health mainly due to its impact on gut microbiota structure and metabolites. This study aimed to investigate the impact of Dendrobium officinale polysaccharides (DOP) and two common fibers (ß-glucan and inulin) on the gut microbiome structure and metabolic profile in vitro. Fecal samples were obtained from 30 healthy volunteers, which were then individually subjected to fermentation with each type of fiber. The results revealed that all fibers were efficiently degraded by gut microbiota, with DOP exhibiting a slower fermentation rate compared to ß-glucan and inulin. The fermentation of all fibers led to a significant increase in the production of short-chain fatty acids (SCFAs) and a reduction in branched-chain fatty acids (BCFAs), sulfides, phenols, and indole. Moreover, the abundance of unclassified Enterobacteriaceae, which was positively correlated with sulfide, phenols, and indole levels, was significantly reduced by all fibers. Additionally, DOP specifically promoted the growth of Parabacteroides, while ß-glucan and inulin promoted the growth of Bifidobacterium and Faecalibacterium. Taken together, these findings enhance our understanding of the role of DOP, ß-glucan, and inulin in modulating gut microbiota and metabolites, where the fermentation with fecal bacteria from different volunteers could provide valuable insights for personalized therapeutic approaches.


Assuntos
Dendrobium , beta-Glucanas , Humanos , Prebióticos/análise , Inulina/farmacologia , Inulina/metabolismo , Fermentação , beta-Glucanas/farmacologia , beta-Glucanas/metabolismo , Multiômica , Polissacarídeos/farmacologia , Polissacarídeos/análise , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Indóis , Fenóis/análise
7.
3D Print Addit Manuf ; 10(4): 631-639, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609581

RESUMO

Three-dimensional (3D) printing of Cu items is a new way to build up the structured Cu materials, but 3D printing of Cu items is usually a challenge because of the high melting point, high thermal conductivity, and high light reflection rate of Cu material. In this study, the composite of Cu microspheres powder and Cu nanoparticles (micro/nano Cu powder) is used to realize the 3D printing of Cu items with the selective laser melting technology. The sintering temperature and the thermal conductivity of micro/nano Cu powder are evidently decreased due to Cu nanoparticles' addition in the micron Cu powder. The results reveal that the 3D printing of 50%/50% micro/nano Cu powder needs laser power range of 100-240 W, which is in contrast to 200-340 W for 3D printing of 100% Cu microspheres powder. Furthermore, the conductivity, mechanical strength, and density of 3D-printed Cu items are improved with the addition of Cu nanoparticles into the micron Cu powder. The increasement of 34% on electrical conductivity and 17% on tensile strength are reached by the addition of 50% Cu nanoparticles with the laser power of 240 W.

8.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511155

RESUMO

Transforming growth factor-ß (TGF-ß)/Smad3 signaling has been shown to play important roles in fibrotic and inflammatory diseases. However, the role of Smad3 in dyslipidemia and non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes remains unclear, and whether targeting Smad3 has a therapeutic effect on these metabolic abnormalities remains unexplored. These topics were investigated in this study in Smad3 knockout (KO)-db/db mice and by treating db/db mice with a Smad3-specific inhibitor SIS3. Compared to Smad3 wild-type (WT)-db/db mice, Smad3 KO-db/db mice were protected against dyslipidemia and NAFLD. Similarly, treatment of db/db mice with SIS3 at week 4 before the onset of type 2 diabetes until week 12 was capable of lowering blood glucose levels and improving diabetic dyslipidemia and NAFLD. In addition, using RNA-sequencing, the potential Smad3-target genes related to lipid metabolism was identified in the liver tissues of Smad3 KO/WT mice, and the regulatory mechanisms were investigated. Mechanistically, we uncovered that Smad3 targeted peroxisome proliferator-activated receptor delta (PPARδ) to induce dyslipidemia and NAFLD in db/db mice, which was improved by genetically deleting and pharmacologically inhibiting Smad3.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , PPAR delta , Proteína Smad3 , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , PPAR delta/metabolismo , Proteína Smad3/metabolismo
9.
J Environ Manage ; 345: 118596, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421722

RESUMO

The compost-derived humic acids (HA) and fulvic acids (FA) contain abundant active functional groups with strong redox capacity, which can function as an electron shuttles for promoting the reduction of heavy metals, thus changing the form of the pollutants in the environment and reducing their toxicity. Therefore, in this study, UV-Vis, FTIR, 3D-EEM, electrochemical analysis were applied to study the spectral characteristics and electron transfer capacity (ETC) of HA and FA. Upon analysis, the results showed an increasing trend of ETC and humification degree (SUVA254) for both HA and FA during composting. However, the aromatic degree (SUVA280) of HA was higher than FA. After 7 days of culture, 37.95% of Cr (Ⅵ) was reduced by Shewanella oneidensis MR-1 (MR-1) alone. Whereas, only if HA or FA existed, the diminution of Cr (Ⅵ) reached 37.43% and 40.55%, respectively. However, the removal rate of Cr (Ⅵ) by HA/MR-1 and FA/MR-1 increased to 95.82% and 93.84% respectively. It indicated that HA and FA acted as electron shuttles, mediating the transfer of electrons between MR-1 and the final electron acceptor, effectively facilitating the bioreduction of Cr (Ⅵ) to Cr (Ⅲ) and also determined via correlation analysis. This study suggested compost-derived HA and FA coupling with MR-1 exhibited excellent performance for the bioreduction of Cr (Ⅵ) to Cr (Ⅲ).


Assuntos
Compostagem , Shewanella , Cromo , Oxirredução , Substâncias Húmicas/análise
10.
Front Plant Sci ; 14: 1133060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077629

RESUMO

Introduction: Crop pests have a great impact on the quality and yield of crops. The use of deep learning for the identification of crop pests is important for crop precise management. Methods: To address the lack of data set and poor classification accuracy in current pest research, a large-scale pest data set named HQIP102 is built and the pest identification model named MADN is proposed. There are some problems with the IP102 large crop pest dataset, such as some pest categories are wrong and pest subjects are missing from the images. In this study, the IP102 data set was carefully filtered to obtain the HQIP102 data set, which contains 47,393 images of 102 pest classes on eight crops. The MADN model improves the representation capability of DenseNet in three aspects. Firstly, the Selective Kernel unit is introduced into the DenseNet model, which can adaptively adjust the size of the receptive field according to the input and capture target objects of different sizes more effectively. Secondly, in order to make the features obey a stable distribution, the Representative Batch Normalization module is used in the DenseNet model. In addition, adaptive selection of whether to activate neurons can improve the performance of the network, for which the ACON activation function is used in the DenseNet model. Finally, the MADN model is constituted by ensemble learning. Results: Experimental results show that MADN achieved an accuracy and F1Score of 75.28% and 65.46% on the HQIP102 data set, an improvement of 5.17 percentage points and 5.20 percentage points compared to the pre-improvement DenseNet-121. Compared with ResNet-101, the accuracy and F1Score of MADN model improved by 10.48 percentage points and 10.56 percentage points, while the parameters size decreased by 35.37%. Deploying models to cloud servers with mobile application provides help in securing crop yield and quality.

11.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903313

RESUMO

Atrazine is a toxic and refractory herbicide that poses threats to human health and the ecological environment. In order to efficiently remove atrazine from water, a novel material, Co/Zr@AC, was developed. This novel material is prepared by loading two metal elements, cobalt and zirconium, onto activated carbon (AC) through solution impregnation and high-temperature calcination. The morphology and structure of the modified material were characterized, and its ability to remove atrazine was evaluated. The results showed that Co/Zr@AC had a large specific surface area and formed new adsorption functional groups when the mass fraction ratio of Co2+:Zr4+ in the impregnating solution was 1:2, the immersion time was 5.0 h, the calcination temperature was 500 °C, and the calcination time was 4.0 h. During the adsorption experiment on 10 mg/L atrazine, the maximum adsorption capacity of Co/Zr@AC was shown to be 112.75 mg/g and the maximum removal rate was shown to be 97.5% after 90 min of the reaction at a solution pH of 4.0, temperature of 25 °C, and Co/Zr@AC concentration of 60.0 mg/L. In the kinetic study, the adsorption followed the pseudo-second-order kinetic model (R2 = 0.999). The fitting effects of Langmuir and Freundlich isotherms were excellent, indicating that the process of Co/Zr@AC adsorbing atrazine also conformed to two isotherm models, so the adsorption of atrazine by Co/Zr@AC had multiple effects including chemical adsorption, mono-molecular layer adsorption, and multi-molecular layer adsorption. After five experimental cycles, the atrazine removal rate was 93.9%, indicating that Co/Zr@AC is stable in water and is an excellent novel material that can be used repeatedly.

12.
Food Res Int ; 164: 112328, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737921

RESUMO

Whole grains (WGs) are considered as the representative sources of dietary fiber (DF). Thermal treatments can change the properties of DF, and potentially affecting the gut microbiota as well as human health. In this study, DF content and in vitro fermentation characteristics of 9 kinds of WGs (highland barley, barley, buckwheat, proso millet, quinoa, sorghum, coix seed, foxtail millet, and oats) after boiling and steaming treatments were compared. It was found that boiling and steaming treatments could both increase DF content in these grains, except for barley and foxtail millet. Processed WGs could regulate beneficial microbial genus, such as Bifidobacterium, Prevotella, Megamona and Megasphaera. Oats, quinoa, highland barley, and buckwheat after boiling treatment can produce more total short-chain fatty acids (SCFAs) than steaming treatment (p < 0.05), while barley, foxtail millet and coix seed showed opposite results. This study can provide data support for the design of WGs diets and the development of WGs products which are beneficial for gut health.


Assuntos
Microbioma Gastrointestinal , Grãos Integrais , Humanos , Fermentação , Grão Comestível/química , Fibras na Dieta/análise , Microbioma Gastrointestinal/fisiologia , Vapor
13.
Artigo em Inglês | MEDLINE | ID: mdl-36360710

RESUMO

In the field of environmental science and engineering, microorganisms, enzymes and algae are promising biomass materials that can effectively degrade pollutants. However, problems such as poor environmental adaptability, recycling difficulties, and secondary pollution exist in the practical application of non-immobilized biomass materials. Biomass immobilization is a novel environmental remediation technology that can effectively solve these problems. Compared with non-immobilized biomass, immobilized biomass materials have the advantages of reusability and stability in terms of pH, temperature, handling, and storage. Many researchers have studied immobilization technology (i.e., methods, carriers, and biomass types) and its applications for removing refractory organic pollutants. Based on this, this paper reviews biomass immobilization technology, outlines the mechanisms and factors affecting the removal of refractory organic pollutants, and introduces the application of immobilized biomass materials as fillers for reactors in water purification. This review provides some practical references for the preparation and application of immobilized biomass materials and promotes further research and development to expand the application range of this material for water purification.


Assuntos
Poluentes Ambientais , Purificação da Água , Águas Residuárias , Biomassa , Purificação da Água/métodos , Temperatura
14.
RSC Adv ; 12(40): 25833-25843, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36199607

RESUMO

The use of MnO2/MgFe-layered double hydroxide (MnO2/MgFe-LDH) and MnO2/MgFe-layered double oxide (MnO2/MgFe-LDO400 °C) for arsenic immobilization from the aqueous medium is the subject of this research. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to characterise MnO2/MgFe-LDH and MnO2/MgFe-LDO400 °C. Based on our developed method, MnO2 was spread on the clay composites' surfaces in the form of a chemical bond. The clay composite exhibited a good adsorption effect on arsenic. The experimental findings fit the pseudo-second-order model well, indicating that the chemisorption mechanism played a significant role in the adsorption process. Furthermore, the Freundlich model suited the adsorption isotherm data of all adsorbents well. The recycling experiment showed that MnO2/MgFe-LDH and MnO2/MgFe-LDO400 °C exhibited good stability and reusability. In summary, MnO2/MgFe-LDH and MnO2/MgFe-LDO400 °C are promising for developing processes for efficient control of the pollutant arsenic.

15.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822206

RESUMO

Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human gut. Accumulating evidence suggests that dietary fiber plays a crucial role in host health, yet most studies have focused on how the dietary fiber affects health through gut Bacteroides. More recently, gut Firmicutes have been found to possess many genes responsible for fermenting dietary fiber, and could also interact with the intestinal mucosa and thereby contribute to homeostasis. Consequently, the relationship between dietary fiber and Firmicutes is of interest, as well as the role of Firmicutes in host health. In this review, we summarize the current knowledge regarding the molecular mechanism of dietary fiber degradation by gut Firmicutes and explain the communication pathway of the dietary fiber-Firmicutes-host axis, and the beneficial effects of dietary fiber-induced Firmicutes and their metabolites on health. A better understanding of the dialogue sustained by the dietary fiber-Firmicutes axis and the host could provide new insights into probiotic therapy and novel dietary interventions aimed at increasing the abundance of Firmicutes (such as Faecalibacterium, Lactobacillus, and Roseburia) to promote health.


Dietary fiber-induced gut Firmicutes and their metabolites exhibit relevant health-promoting functions.Most of dietary fiber have a great effect on gut Firmicutes.Mechanisms of dietary fiber uptake by gut Firmicutes are outlined.Mechanisms of dietary fiber- gut Firmicutes-host interactions require more investigation for the development of dietary fiber in food production and host health.

16.
Bioorg Med Chem Lett ; 66: 128734, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436589

RESUMO

We previously described the discovery of a novel indole series compounds as oral SERD for ER positive breast cancer treatment. Further SAR exploration focusing on substitutions on indole moiety of compound 12 led to the discovery of a clinical candidate LX-039. We report herein its profound anti-tumor activity, desirable ER antagonistic characteristics combined with favorable pharmacokinetic and preliminary safety properties. LX-039 is currently in clinical trial (NCT04097756).


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Administração Oral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ensaios Clínicos como Assunto , Receptor alfa de Estrogênio , Feminino , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia
17.
Sci Total Environ ; 832: 155116, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398133

RESUMO

Acid mine drainage (AMD), a source of considerable environmental pollution worldwide, has prompted the development of many strategies to alleviate its effects. Unfortunately, the methods available for remedial treatment of AMD and the damage it cause are generally costly, labor-intensive, and time-consuming. Furthermore, such treatments may result in secondary pollution. Alternatively, treating the AMD problem at its source through pyrite surface passivation has become an important topic for research because it has the potential to reduce or prevent the generation of AMD and associated pollution. This review summarizes various pyrite anti-corrosion technologies, including the formation of various passivating coatings (inorganic, organic and organosilane) and carrier-microencapsulation. Several effective long-term passivators are identified, although many of them currently have important deficiencies that limit their practical application. Combining the mechanisms of existing passivation agents or new artificial materials, while considering environmental conditions, costs, and long-term passivation performance, is a feasible direction for future research.


Assuntos
Mineração , Sulfetos , Ácidos , Ferro
18.
Sci Total Environ ; 826: 154083, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35217046

RESUMO

East China Sea (ECS) is considered one of the largest dissolved oxygen (DO) depleted areas in the world's oceans. To assess the relative importance of water sources and biological processes to modulate low DO water over the ECS shelf, we conducted 7 cruises in the summers between 2004 and 2015. To cover a broad study area, observations were taken by both Chinese and Japanese research vessels in 2013, the consistent DO values were obtained in the intercalibration station from China and Japan. The subsurface/bottom water DO depletion was observed over both the inner and mid-outer shelves. In 2009 and 2013, the low DO (3-4.2 mg L-1) area covered ca. 4 × 104 km2 on the mid-outer shelf, comparable with the reported area of summer hypoxia off the Changjiang estuary. On the basis of a seven endmember mixing model using heavy rare earth elements, temperature and salinity data collected in 2013 and 2015, we determined that on the southern shelf the low DO water mainly originated from Kuroshio Subsurface Water (28-72%). Both the DO level in the dominant source water and organic matter (OM) remineralization modulated the formation and expansion of low DO waters. Oxygen-depleted bottom waters featured with high nutrients were both transported from the water's source regions and produced by OM remineralization on the mid-outer shelf. The estimated regenerated nutrient fluxes derived from OM respiration in the bottom water of the mid-outer shelf were equivalent to 18-37% of the nitrate and nitrite, and 2 to 5-fold the phosphorus, delivered from the Changjiang River in summer. The large quantity of regenerated nutrients from oxygen-depleted bottom waters on the mid-outer shelf could be utilized and support primary production in the adjacent oceans. Our findings provide valuable observation for simulation models of nutrient cycles and budgets in the ECS and adjacent oceans.


Assuntos
Estuários , Oxigênio , China , Nutrientes , Oxigênio/análise , Rios , Água
19.
Theranostics ; 12(1): 379-395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987651

RESUMO

Rationale: Poor ß cell proliferation is one of the detrimental factors hindering islet cell replacement therapy for patients with diabetes. Smad3 is an important transcriptional factor of TGF-ß signaling and has been shown to promote diabetes by inhibiting ß cell proliferation. Therefore, we hypothesize that Smad3-deficient islets may be a novel cell replacement therapy for diabetes. Methods: We examined this hypothesis in streptozocin-induced type-1 diabetic mice and type-2 diabetic db/db mice by transplanting Smad3 knockout (KO) and wild type (WT) islets under the renal capsule, respectively. The effects of Smad3KO versus WT islet replacement therapy on diabetes and diabetic kidney injury were examined. In addition, RNA-seq was applied to identify the downstream target gene underlying Smad3-regulated ß cell proliferation in Smad3KO-db/db versus Smad3WT-db/db mouse islets. Results: Compared to Smad3WT islet therapy, treatment with Smad3KO islets produced a much better therapeutic effect on both type-1 and type-2 diabetes by significantly lowering serum levels of blood glucose and HbA1c and protected against diabetic kidney injuries by preventing an increase in serum creatinine and the development of proteinuria, mesangial matrix expansion, and fibrosis. These were associated with a significant increase in grafted ß cell proliferation and blood insulin levels, resulting in improved glucose intolerance. Mechanistically, RNA-seq revealed that compared with Smad3WT-db/db mouse islets, deletion of Smad3 from db/db mouse islets markedly upregulated E2F3, a pivotal regulator of cell cycle G1/S entry. Further studies found that Smad3 could bind to the promoter of E2F3, and thus inhibit ß cell proliferation via an E2F3-dependent mechanism as silencing E2F3 abrogated the proliferative effect on Smad3KO ß cells. Conclusion: Smad3-deficient islet replacement therapy can significantly improve both type-1 and type-2 diabetes and protect against diabetic kidney injury, which is mediated by a novel mechanism of E2F3-dependent ß cell proliferation.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fator de Transcrição E2F3/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína Smad3/metabolismo , Animais , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Food Chem Toxicol ; 156: 112522, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34438010

RESUMO

BACKGROUND AND OBJECTIVES: Dietary fibers have beneficial effects on human health through the interaction with gut microbiota. Larch wood arabinogalactan (LA-AG) is one kind of complex soluble dietary fibers that may be utilized by human gut microbiota. METHODS AND RESULTS: In this study, the LA-AG degradation by gut microbiota were characterized by investigating the change of LA-AG, microbiota composition, and the production of short-chain fatty acids (SCFAs), lactic acid, succinic acid, as well as volatile organic metabolites. During the fermentation, pH decreased continuously, along with the organic acids (especially acetic acid and lactic acid) accumulating. LA-AG was degraded by gut microbiota then some beneficial metabolites were produced. In addition, LA-AG inhibited the proliferation of some gut microbiota (Unclassified_Enterobacteriaceae and Citrobacter) and the accumulation of some metabolites (Sulfide and indole) released by gut microbiota. CONCLUSION: LA-AG was partly fermentable fibers with prebiotic potential for human gut health.


Assuntos
Galactanos/metabolismo , Microbioma Gastrointestinal/fisiologia , Prebióticos , Bactérias/classificação , Bactérias/metabolismo , Fibras na Dieta , Fezes/microbiologia , Fermentação , Galactanos/química , Humanos , Larix/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA