Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
ACS Nano ; 18(26): 17267-17281, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871478

RESUMO

Intrinsic or acquired resistance to chemical drugs severely limits their therapeutic efficacy in cancer treatment. Various intracellular antioxidant molecules, particularly glutathione (GSH), play a crucial role in maintaining intracellular redox homeostasis by mitigating the overproduced reactive oxygen species (ROS) due to rapid cell proliferation. Notably, these antioxidants also eliminate chemical-drug-induced ROS, eventually diminishing their cytotoxicity and rendering them less effective. In this study, we combined erastin, a GSH biosynthesis inhibitor, with 2'-deoxy-5-fluorouridine 5'-monophosphate sodium salt (FdUMP), an ROS-based drug, to effectively disrupt intracellular redox homeostasis and reverse chemotherapy resistance. Therefore, efficient ferroptosis and apoptosis were simultaneously induced for enhanced antitumor effects. Additionally, we employed small interfering RNA targeting PD-L1 (siPD-L1) as a third agent to block immune-checkpoint recognition by CD8+ T cells. The highly immunogenic cell peroxidates or damage-associated molecular patterns (DAMPs) induced by erastin acted synergistically with downregulated PD-L1 to enhance the antitumor effects. To codeliver these three drugs simultaneously and efficiently, we designed GE11 peptide-modified lipid nanoparticles (LNPs) containing calcium phosphate cores to achieve high encapsulation efficiencies. In vitro studies verified its enhanced cytotoxicity, efficient intracellular ROS induction and GSH/GPX4 downregulation, substantial lipid peroxidation product accumulation, and mitochondrial depolarization. In vivo, this formulation effectively accumulated at tumor sites and achieved significant tumor inhibition in subcutaneous colon cancer (CRC) mouse models with a maximum tumor inhibition rate of 83.89% at a relatively low dose. Overall, a strategy to overcome clinical drug resistance was verified in this study by depleting GSH and activating adaptive immunity.


Assuntos
Antineoplásicos , Apoptose , Antígeno B7-H1 , Regulação para Baixo , Ferroptose , Nanopartículas , Ferroptose/efeitos dos fármacos , Animais , Humanos , Camundongos , Nanopartículas/química , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Regulação para Baixo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Lipídeos/química , Proliferação de Células/efeitos dos fármacos , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Lipossomos
2.
Mater Today Bio ; 26: 101016, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516171

RESUMO

Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.

3.
J Control Release ; 368: 52-65, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368946

RESUMO

FOLFOX regimen, composed of folinic acid, 5-fluorouracil (5-FU) and oxaliplatin (OXP), has been used as clinical standard therapeutic regimen in treatments of colorectal cancer (CRC) and esophageal squamous cell carcinoma (ESCC). To further improve its therapeutic outcomes, FOLFOX was combined with anti-PD-1 antibody to form an advanced chemo-immune combination strategy, which has been proven more efficient in controlling cancer progression and prolonging patients' survival in various clinical trials. However, bad tumor accumulation, relative high toxicity, numerous treatment cycles with high fees and low compliance as well as drug resistance seriously limit the prognosis of FOLFOX regimen. The "all-in-one" formulations, which could precisely delivery multidrug regimen into tumor sites and cells, showed a promising application prospect for targeted drug delivery as well as reducing side effects. However, the design and preparation of the "all-in-one" formulation with high drug encapsulation efficiencies for all drugs was still challenging. Herein, a lipid core-shell nanoparticle codelivery platform was designed for simultaneous encapsulation of variant FOLFOX composed of miriplatin (MiPt), 5-Fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP), calcium folinate (CF) and PD-L1 siRNA (siPD-L1) with high efficiencies, and their synergistic anti-tumor mechanisms were studied, respectively. MiPt, a precursor of OXP, was validated capable of inducing efficient immunogenic cell death (ICD) in this work. Additionally, ICD-mediated release of damage associated molecular patterns functionalized synergistically with PD-L1 silence by siPD-L1 to overcome chemoresistance, reverse suppressive tumor microenvironment and recruit more CD8+ T cells. FdUMP, as the intracellular active form of 5-FU, could induce large amounts of reactive oxygen species to enhance the ICD. CF worked as the sensitizer of FdUMP. The enhanced long-term anti-tumor effect of the prepared "all-in-one" formulation compared to free drug regimen and other controls, was verified in heterotopic CRC mice models and ESCC mice models, providing new thoughts for researchers and showing a promising prospect of translation into clinical applications.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Nanopartículas , Humanos , Animais , Camundongos , Leucovorina/uso terapêutico , Antígeno B7-H1 , Neoplasias Colorretais/patologia , Linfócitos T CD8-Positivos/patologia , Fluordesoxiuridilato/uso terapêutico , Fluoruracila/uso terapêutico , Oxaliplatina , Lipídeos/uso terapêutico , Linhagem Celular Tumoral , Imunoterapia , Compostos Organoplatínicos
4.
Acta Pharm Sin B ; 13(12): 5091-5106, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045037

RESUMO

Despite exciting achievements with some malignancies, immunotherapy for hypoimmunogenic cancers, especially glioblastoma (GBM), remains a formidable clinical challenge. Poor immunogenicity and deficient immune infiltrates are two major limitations to an effective cancer-specific immune response. Herein, we propose that an injectable signal-amplifying nanocomposite/hydrogel system consisting of granulocyte-macrophage colony-stimulating factor and imiquimod-loaded antigen-capturing nanoparticles can simultaneously amplify the chemotactic signal of antigen-presenting cells and the "danger" signal of GBM. We demonstrated the feasibility of this strategy in two scenarios of GBM. In the first scenario, we showed that this simultaneous amplification system, in conjunction with local chemotherapy, enhanced both the immunogenicity and immune infiltrates in a recurrent GBM model; thus, ultimately making a cold GBM hot and suppressing postoperative relapse. Encouraged by excellent efficacy, we further exploited this signal-amplifying system to improve the efficiency of vaccine lysate in the treatment of refractory multiple GBM, a disease with limited clinical treatment options. In general, this biomaterial-based immune signal amplification system represents a unique approach to restore GBM-specific immunity and may provide a beneficial preliminary treatment for other clinically refractory malignancies.

5.
Acta Pharm Sin B ; 13(9): 3945-3955, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719367

RESUMO

Immunotherapy has revolutionized the landscape of cancer treatment. However, single immunotherapy only works well in a small subset of patients. Combined immunotherapy with antitumor synergism holds considerable potential to boost the therapeutic outcome. Nevertheless, the synergistic, additive or antagonistic antitumor effects of combined immunotherapies have been rarely explored. Herein, we established a novel combined cancer treatment modality by synergizing p21-activated kinase 4 (PAK4) silencing with immunogenic phototherapy in engineered extracellular vesicles (EVs) that were fabricated by coating M1 macrophage-derived EVs on the surface of the nano-complex cores assembled with siRNA against PAK4 and a photoactivatable polyethyleneimine. The engineered EVs induced potent PAK4 silencing and robust immunogenic phototherapy, thus contributing to effective antitumor effects in vitro and in vivo. Moreover, the antitumor synergism of the combined treatment was quantitatively determined by the CompuSyn method. The combination index (CI) and isobologram results confirmed that there was an antitumor synergism for the combined treatment. Furthermore, the dose reduction index (DRI) showed favorable dose reduction, revealing lower toxicity and higher biocompatibility of the engineered EVs. Collectively, the study presents a synergistically potentiated cancer treatment modality by combining PAK4 silencing with immunogenic phototherapy in engineered EVs, which is promising for boosting the therapeutic outcome of cancer immunotherapy.

6.
J Control Release ; 349: 565-579, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835399

RESUMO

Local treatment after resection to inhibit glioma recurrence is thought to able to meet the real medical needs. However, the only clinically approved local glioma treatment-wafer containing bis(2-chloroethyl) nitrosourea (BCNU) showed very limited effects. Herein, in order to inhibit tumor recurrence with prolonged and synergistic therapeutic effect of drugs after tumor resection, an in situ dual-sensitive hydrogel drug delivery system loaded with two synergistic chemo-drugs BCNU and temozolomide (TMZ) was developed. The thermosensitive hydrogel was loaded with reactive oxygen species (ROS)-sensitive poly (lactic-co-glycolic) acid nanoparticles (NPs) encapsulating both BCNU and TMZ and also free BCNU and TMZ. The in vitro synergistic effect of BCNU and TMZ and in vivo presence of ROS at the residual tumor site were confirmed. The prepared ROS-sensitive NPs and thermosensitive hydrogel, as well as the long-term release behavior of drugs and NPs, were fully characterized both in vitro and in vivo. After >90% glioblastoma resection, the dual-sensitive hydrogel drug delivery system was injected into the resection cavity. The median survival time of the experimental group reached 65 days which was twice as long as the Resection only group, implying that this in situ drug delivery system effectively inhibited tumor recurrence. Overall, this study provides new ideas and strategies for the inhibition of postoperative glioma recurrence.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Carmustina/uso terapêutico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/cirurgia , Humanos , Hidrogéis/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Espécies Reativas de Oxigênio , Temozolomida
7.
Biosaf Health ; 4(2): 70-78, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35310559

RESUMO

Despite multiple virus outbreaks over the past decade, including the devastating coronavirus disease 2019 (COVID-19) pandemic, the lack of accurate and timely diagnosis and treatment technologies has wreaked havoc on global biosecurity. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has the potential to address these critical needs for tackling infectious diseases to detect viral nucleic acids and inhibit viral replication. This review summarizes how the CRISPR/Cas system is being utilized for the treatment and diagnosis of infectious diseases with the help of biosafety materials and highlights the design principle and in vivo and in vitro efficacy of advanced biosafety materials used to deal with virus attacks.

8.
J Control Release ; 345: 314-333, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331783

RESUMO

Since its outbreak in late 2019, the novel coronavirus disease 2019 (COVID-19) has spread to every continent on the planet. The global pandemic has affected human health and socioeconomic status around the world. At first, the global response to the pandemic was to isolate afflicted individuals to prevent the virus from spreading, while vaccine development was ongoing. The genome sequence was first presented in early January 2020, and the phase I clinical trial of the vaccine started in March 2020 in the United States using novel lipid-based nanoparticle (LNP), encapsulated with mRNA termed as mRNA-1273. Till now, various mRNA-based vaccines are in development, while one mRNA-based vaccine got market approval from US-FDA for the prevention of COVID-19. Previously, mRNA-based vaccines were thought to be difficult to develop, but the current development is a significant accomplishment. However, widespread production and global availability of mRNA-based vaccinations to combat the COVID-19 pandemic remains a major challenge, especially when the mutations continually occur on the virus (e.g., the recent outbreaks of Omicron variant). This review elaborately discusses the COVID-19 pandemic, the biology of SARS-CoV-2 and the progress of mRNA-based vaccines. Moreover, the review also highlighted a detailed description of mRNA delivery technologies and the application potential in controlling other life-threatening diseases. Therefore, it provides a comprehensive view and multidisciplinary insights into mRNA therapy for broader audiences.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Pandemias/prevenção & controle , RNA Mensageiro/genética , SARS-CoV-2/genética , Estados Unidos/epidemiologia , Vacinas Sintéticas , Vacinas de mRNA
9.
Int J Pharm ; 606: 120940, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34310959

RESUMO

The tissue-specific targeted delivery and efficient cellular uptake of siRNAs are the main obstacles to their clinical application. Antibody-siRNA-conjugates (ARCs) can deliver siRNA by exploiting the targeting property of antibodies like antibody-drug conjugates (ADCs). However, the effective conjugation of antibodies and siRNAs and the release of siRNAs specifically at target sites have posed challenges to the development of ARCs. In this study, the successful conjugation of antibodies and siRNAs was achieved using a multifunctional peptide as a linker, composed of a cell-penetrating peptide (CPP) and a substrate peptide (SP), which is highly expressed in solid tumors. The resulting antibody-multifunctional peptide (SP-CPP)-siRNA system delivered the siRNA to target tumor cells by the specific binding of the antibody. Once the enzymes on the tumor cell surface hydrolyzed the substrate peptide linker, siRNA-CPP was released from ARCs. The released siRNA-CPP entered the targeted cells via the cellular penetrating ability of CPP, resulting in improved siRNA-mediated gene silencing efficiency, verified both in vitro and in vivo. After intravenous administration, the designed ARCs achieved approximately 66.7% EGFP (Enhanced Green Fluorescent Protein) downregulation efficiency in nude mice xenografted with the HCT116-EGFP tumor model. The proposed system provides a prospective choice for ARC production and the safe and efficient delivery of siRNAs.


Assuntos
Peptídeos Penetradores de Células , Imunoconjugados , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Estudos Prospectivos , RNA Interferente Pequeno
10.
Int J Pharm ; 584: 119469, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32470482

RESUMO

Non-injectable delivery of peptides and proteins is not feasible due to the limitations of large molecular mass, high hydrophilic properties, and gastrointestinal degradation. Therefore, proposing a new method to solve this problem is a burning issue. The objective of this study was to propose a novel protein delivery strategy to overcome the poor efficacy and irritation of buccal insulin delivery. In this study, we applied a conjugate of cell-penetrating peptides (LMWP) and insulin (INS-PEG-LMWP) for buccal delivery. INS-PEG-LMWP was prepared using insulin solution and mixture as references. The transport behaviour, in vivo bioactivity, hypoglycaemic effect, and safety of INS-PEG-LMWP were systematically characterised. An in vitro study demonstrated that the uptake and transportation of INS-PEG-LMWP across buccal mucosal multilayers significantly increased. By comparing the effects of different endocytic inhibitors on INS-PEG-LMWP uptake, the conjugate might be delivered via an energy independent, electrostatically adsorbed pathway. INS-PEG-LMWP's relative pharmacological bioavailability was high and its relative bioavailability was up to 26.86%, demonstrating no visible mucosal irritation. Cell-penetrating peptides are likely to become a reliable and safe tool for overcoming insulin's low permeability through the epithelial multilayers, the major barrier to buccal delivery.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Mucosa Bucal/metabolismo , Polietilenoglicóis/administração & dosagem , Animais , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacocinética , Humanos , Hipoglicemiantes/sangue , Hipoglicemiantes/farmacocinética , Insulina/sangue , Insulina/farmacocinética , Masculino , Absorção pela Mucosa Oral , Permeabilidade , Polietilenoglicóis/farmacocinética , Coelhos , Suínos
11.
J Control Release ; 322: 610-621, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32194175

RESUMO

Critical limb ischemia (CLI) is the most advanced stage of peripheral artery disease, associated with significant risk of limb loss, morbidity and mortality; however, there remains unmet therapeutic needs for arterial revascularization and ischemic tissue repair. Stem cell therapies have emerged as compelling candidates due to beneficial proangiogenic and immunosuppressive function. Nevertheless, in vivo efficacy was insufficient in proliferation, differentiation and survival/engraftment rate. Cardiac stem cells (CSCs) was firstly attempted for CLI as a novel therapeutic modality to provide superior angiogenic potency to bone marrow-derived stem cells (BMSCs). It was noted that CSCs demonstrated 3.2-fold in HGF, 2.9-fold in VEGF and 8.7-fold in PDGF-B higher gene expressions compared to BMSCs. To enhance the hypoxia-induced proangiogenic effect, CSCs were transfected with hypoxia-inducible factor-1 alpha (HIF-1α) by using electroporation method, specifically optimized for CSCs yielding 45.77% of transfection efficiency and 89.75% of viability. HIF-1α overexpression significantly increased CSC survival in hypoxia, proangiogenic factors production and endothelial differentiation. In mouse hind limb ischemia model, local intramuscular delivery of CSC overexpressing HIF-1α (HIF-CSC) significantly improved the blood flow recovery. Histological analysis revealed that muscle degeneration and fibrosis in the ischemic limb were attenuated. Local delivery of HIF-CSC might be a promising option for ischemic tissue restoration.


Assuntos
Células-Tronco Mesenquimais , Doença Arterial Periférica , Animais , Diferenciação Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isquemia/terapia , Camundongos , Neovascularização Patológica , Neovascularização Fisiológica , Doença Arterial Periférica/terapia
12.
Biomater Sci ; 8(8): 2308-2317, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32186291

RESUMO

Overlapping substrate specificities within the family of matrix metalloproteinases (MMPs), usually caused by their highly conserved structural topology, increase the potential for a substrate to be cleaved by multiple enzymes within this family, which leads to the decrease in the selectivity of MMP substrate-based probes. To resolve this issue, MT1-MMP activatable fluorogenic probes for tumor detection with enhanced specificity were developed by combining a fluorescence resonance energy transfer (FRET) peptide substrate and its specific binding peptide with different lengths of linkers. The specificity of the probes increased profiting from the high affinity of the MT1-MMP specific binding peptide while keeping the ability to amplify the output imaging signals in response to MMP activity with the FRET substrate. Enzyme kinetics analysis clearly demonstrated that the conjugation of P-1 and MT1-AF7p enhanced both the specificity and selectivity of the fluorogenic probes for MT1-MMP, and introducing a linker composed of 12 PEG subunits into these two fragments led to optimized specificity and selectivity of the fluorogenic probe for MT1-MMP. Both in vitro and in vivo results revealed that the imaging probe with the linker composed of 12 PEG subunits based on our designed strategy could be effectively applied for MT1-MMP positive tumor imaging. Since this strategy for enhancing the specificity of protease sensing probes can be applied to other proteases and is not just limited to MT1-MMP, it is an appealing platform to achieve selective tumor imaging.


Assuntos
Corantes Fluorescentes/administração & dosagem , Metaloproteinase 14 da Matriz/administração & dosagem , Peptídeos/administração & dosagem , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Peptídeos/química , Proteínas Recombinantes/administração & dosagem
13.
J Biomed Nanotechnol ; 15(3): 487-499, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31165694

RESUMO

Integrating the functions of bioimaging, targeting and controlled release of therapeutic agents into a single nanoparticle is of great interests in nanomedicine and nanobiology. Herein, a cis -diol/pH dual-responsive upconversion nanoparticle (UCNP)-based theranostic platform has been developed for delivery of the anticancer drug to cancer cells. This nanoplatform is based on the strategic design of targetable hyaluronan modified UCNPs (HA-UCNPs) that are coupled with aminobenzeneboronic acid (APBA) to obtain APBA-UCNPs, having favorable tumor selectivity as well as the capacity for capturing cis-diol-containing therapeutics. The controlled release function is then achieved through the self-assembly of hydroxycamptothecin derivative ligands onto the surfaces of APBA-UCNPs, which is controllable in a stimuli-dependent manner. The UCNP-based theranostic probe taken up by tumor cells via receptor-mediated endocytosis liberates drugs triggered by competitive glucose at low pH in endosomes/lysosomes, resulting in cell apoptosis. The dual-responsive mechanism of boronate ester bonds gives a chemoselective strategy for controlled release of drug within tumor cells, establishing an alternative approach to treat a broad spectrum of diseases exploiting similar boronic acid-involved therapeutics.


Assuntos
Nanopartículas , Neoplasias , Humanos , Ácido Hialurônico , Concentração de Íons de Hidrogênio , Nanomedicina
14.
J Control Release ; 302: 169-180, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30954618

RESUMO

Delivery of synovium-resident mesenchymal stem cells (synMSCs) to cartilage defect site might provide a novel therapeutic modality for treatment of articular cartilage diseases. However, low isolation efficiency of synMSCs limits their therapeutic application. Niche-preserving non-enzymatic isolation of synMSCs was firstly attempted by employing micro-organ culture system based on recapitulating tissue-specific homeostasis ex vivo. The isolated synMSCs retained superior long-term growth competency, proliferation and chondrogenic potential to bone marrow-derived MSCs (BMSCs). It was noted that synMSCs demonstrated 9-fold increase in cartilaginous micro-tissue formation and 13-fold increase in sulfated proteoglycans deposition compared to BMSCs. For delivery of synMSCs, fibrous PLGA scaffolds were specifically designed for full-thickness osteochondral defects in rabbits. The scaffolds provided effective micro-environment for growth and host-integration of synMSCs. Combined delivery of synMSCs with bone morphogenetic proteins-7 (BMP-7) was designed to achieve synergistic therapeutic efficacy. BMP-7-loaded PLGA nanoparticles electrosprayed onto the scaffolds released BMP-7 over 2 weeks to conform with its aimed role in stimulating early stage endochondral ossification. Scaffold-supported combined administration of synMSCs with BMP-7 resulted in high proteoglycan and collagen type II induction and thick hyaline cartilage formation. Intra-articular co-delivery of synMSCs with BMP-7 via fibrous PLGA scaffolds may be a promising therapeutic modality for articular cartilage repair.


Assuntos
Proteína Morfogenética Óssea 7/química , Cartilagem Articular/efeitos dos fármacos , Portadores de Fármacos/química , Células-Tronco Mesenquimais/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Membrana Sinovial/química , Animais , Medula Óssea/metabolismo , Proteína Morfogenética Óssea 7/farmacocinética , Regeneração Óssea/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Colágeno Tipo II/metabolismo , Liberação Controlada de Fármacos , Fibrina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Injeções Intra-Articulares , Masculino , Transplante de Células-Tronco Mesenquimais , Osteogênese/efeitos dos fármacos , Proteoglicanas/metabolismo , Coelhos , Engenharia Tecidual , Alicerces Teciduais/química
15.
Acta Pharm Sin B ; 8(6): 956-968, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30505664

RESUMO

In this paper, we prepared a dual functional system based on dextrin-coated silver nanoparticles which were further attached with iron oxide nanoparticles and cell penetrating peptide (Tat), producing Tat-modified Ag-Fe3O4 nanocomposites (Tat-FeAgNPs). To load drugs, an -SH containing linker, 3-mercaptopropanohydrazide, was designed and synthesized. It enabled the silver carriers to load and release doxorubicin (Dox) in a pH-sensitive pattern. The delivery efficiency of this system was assessed in vitro using MCF-7 cells, and in vivo using null BalB/c mice bearing MCF-7 xenograft tumors. Our results demonstrated that both Tat and externally applied magnetic field could promote cellular uptake and consequently the cytotoxicity of doxorubicin-loaded nanoparticles, with the IC50 of Tat-FeAgNP-Dox to be 0.63 µmol/L. The in vivo delivery efficiency of Tat-FeAgNP carrying Cy5 to the mouse tumor was analyzed using the in vivo optical imaging tests, in which Tat-FeAgNP-Cy5 yielded the most efficient accumulation in the tumor (6.7±2.4% ID of Tat-FeAgNPs). Anti-tumor assessment also demonstrated that Tat-FeAgNP-Dox displayed the most significant tumor-inhibiting effects and reduced the specific growth rate of tumor by 29.6% (P = 0.009), which could be attributed to its superior performance in tumor drug delivery in comparison with the control nanovehicles.

16.
Biomater Sci ; 6(10): 2619-2626, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30109310

RESUMO

It is difficult to develop highly selective substrate-based fluorescent nanoprobes for specific matrix metalloproteinases (MMPs) due to overlapping substrate specificities among the family of MMP enzymes. To resolve this issue, we have developed novel fluorescent nanoprobes that are highly selective for soluble MMP-2. Herein, MMP-2-responsive nanoprobes were prepared by immobilizing fluorescent fusion proteins on nickel ferrite nanoparticles via the His-tag nickel chelation mechanism. The fusion protein consisted of a fluorescent mCherry protein with a cell penetrating peptide (CPP) moiety. An MMP-2 cleavage site was also introduced within the fusion protein, which was directly linked to the nickel ferrite nanoparticles. The selectivity of nanoprobes was modulated by hiding the cleavage site of MMP-2 substrates deeply inside the system, which could result in strong steric hindrance between the nanoprobes and MMPs, especially for membrane-tethered MMPs such as MMP-14. A cell-based assay demonstrated that the nanoprobes could only be activated by tumor cells secreting soluble MMP-2, but not membrane-tethered MMP-14. To further evaluate the contribution of the steric hindrance effect on the nanoprobes, a truncated recombinant MMP-14 was employed to confer their cleavage activity as compared to native membrane-tethered MMP-14. Furthermore, a designed probe with a diminished steric hindrance effect was proved to be activated by membrane-tethered type MMP-14. The results indicated that the design of fluorescent nanoprobes employing the steric hindrance effect can greatly enhance the selectivity of MMP-responsive nanoprobes realizing the specific detection of soluble MMP-2 in a tumor microenvironment. We believe that highly selective MMP-2-responsive fluorescent nanoprobes have broad impacts on biomedical applications including molecular imaging and labeling for tumor detection.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Compostos Férricos/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Proteínas Luminescentes/administração & dosagem , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas/administração & dosagem , Níquel/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteína Vermelha Fluorescente
17.
Acta Pharm Sin B ; 8(1): 116-126, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29872628

RESUMO

RNAi technology has aroused wide public interest due to its high efficiency and specificity to treat multiple types of diseases. However, the effective delivery of siRNA remains a challenge due to its large molecular weight and strong anionic charge. Considering their remarkable functions in vivo and features that are often desired in drug delivery carriers, biomimetic systems for siRNA delivery become an effective and promising strategy. Based on this, covalent attachment of synthetic cell penetrating peptides (CPP) to siRNA has become of great interest. We developed a monomeric covalent conjugate of low molecular weight protamine (LMWP, a well-established CPP) and siRNA via a cytosol-cleavable disulfide linkage using PEG as a crosslinker. Results showed that the conjugates didn't generate coagulation, and exhibited much better RNAi potency and intracellular delivery compared with the conventional charge-complexed CPP/siRNA aggregates. Three different synthetic and purification methods were compared in order to optimize synthesis efficiency and product yield. The methodology using hetero-bifunctional NHS-PEG-OPSS as a crosslinker to synthesize LMWP-siRNA simplified the synthesis and purification process and produced the highest yield. These results pave the way towards siRNA biomimetic delivery and future clinical translation.

18.
Theranostics ; 8(4): 878-893, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29463988

RESUMO

The outcome of scaffold-based stem cell transplantation remains unsatisfied due to the poor survival of transplanted cells. One of the major hurdles associated with the stem cell survival is the immune rejection, which can be effectively reduced by the use of immunosuppressant. However, ideal localized and sustained release of immunosuppressant is difficult to be realized, because it is arduous to hold the drug delivery system within scaffold for a long period of time. In the present study, the sustained release of immunosuppressant for the purpose of improving the survival of stem cells was successfully realized by a nanoparticle-anchoring hydrogel scaffold we developed. Methods: Poly (lactic-co-glycolic acid) (PLGA) nanoparticles were modified with RADA16 (RNPs), a self-assembling peptide, and then anchored to a RADA16 hydrogel (RNPs + Gel). The immobilization of RNPs in hydrogel was measured in vitro and in vivo, including the Brownian motion and cumulative leakage of RNPs and the in vivo retention of injected RNPs with hydrogel. Tacrolimus, as a typical immunosuppressant, was encapsulated in RNPs (T-RNPs) that were anchored to the hydrogel and its release behavior were studied. Endothelial progenitor cells (EPCs), as model stem cells, were cultured in the T-RNPs-anchoring hydrogel to test the immune-suppressing effect. The cytotoxicity of the scaffold against EPCs was also measured compared with free tacrolimus-loaded hydrogel. The therapeutic efficacy of the scaffold laden with EPCs on the hind limb ischemia was further evaluated in mice. Results: The Brownian motion and cumulative leakage of RNPs were significantly decreased compared with the un-modified nanoparticles (NPs). The in vivo retention of injected RNPs with hydrogel was obviously longer than that of NPs with hydrogel. The release of tacrolimus from T-RNPs + Gel could be sustained for 28 days. Compared with free tacrolimus-loaded hydrogel, the immune responses were significantly reduced and the survival of EPCs was greatly improved both in vitro and in vivo. The results of histological evaluation, including accumulation of immune cells and deposition of anti-graft antibodies, further revealed significantly lessened immune rejection in T-RNPs-anchoring hydrogel group compared with other groups. In pharmacodynamics study, the scaffold laden with EPCs was applied to treat hind limb ischemia in mice and significantly promoted the blood perfusion (~91 % versus ~36 % in control group). Conclusion: The nanoparticle-anchoring hydrogel scaffold is promising for localized immunosuppressant release, thereby can enhance the survival of transplanted cells and finally lead to successful tissue regeneration.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Células Progenitoras Endoteliais/fisiologia , Regeneração Tecidual Guiada/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Imunossupressores/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Isquemia/terapia , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tacrolimo/administração & dosagem , Resultado do Tratamento
19.
ACS Appl Mater Interfaces ; 9(45): 39209-39222, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29058417

RESUMO

Matrix metalloproteinases (MMPs) activatable imaging probe has been explored for tumor detection. However, activation of the probe is mainly done in the extracellular space without intracellular uptake of the probe for more sensitivity. Although cell-penetrating peptides (CPPs) have been demonstrated to enable intracellular delivery of the imaging probe, they nevertheless encounter off-target delivery of the cargos to normal tissues. Herein, we have developed a dual MMP-2-activatable and tumor cell-permeable magnetic nanoprobe to simultaneously achieve selective and intracellular tumor imaging. This novel imaging probe was constructed by self-assembling a hexahistidine-tagged (His-tagged) fluorescent fusion protein chimera and nickel ferrite nanoparticles via a chelation mechanism. The His-tagged fluorescent protein chimera consisted of a red fluorescent protein mCherry that acted as the fluorophore, the low-molecular-weight protamine peptide as the CPP, and the MMP-2 cleavage sequence fused with the hexahistidine tag, whereas the nickel ferrite nanoparticles functioned as the His-tagged protein binder and also the fluorescent quencher. Both in vitro and in vivo results revealed that this imaging probe would not only remain nonpermeable to normal tissues, thereby offsetting the nonselective cellular uptake, but was also suppressed of fluorescent signals during magnetic tumor-targeting in the circulation, primarily because of the masking of the CPP activity and quenching of the fluorophore by the associated NiFe2O4 nanoparticles. However, these properties were recovered or "turned on" by the action of tumor-associated MMP-2 stimuli, leading to cell penetration of the nanoprobes as well as fluorescence restoration and visualization within the tumor cells. In this regard, the presented tumor-activatable and cell-permeable system deems to be an appealing platform to achieve selective tumor imaging and intracellular protein delivery. Its impact is therefore significant, far-reaching, and wide-spread.


Assuntos
Compostos Férricos/química , Níquel/química , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Magnetismo , Metaloproteinase 2 da Matriz
20.
Nanotheranostics ; 1(1): 114-130, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29071181

RESUMO

Heparin is a kind of naturally occurring polymer with excellent biocompatibility and solubility. It is characterized by dense of negative charge, higher than any endogenous components. Heparin can bind with various cationic peptides and proteins, thereby providing a useful noncovalent linkage for building a drug delivery system. As a case in point, heparin/cell-penetrating peptides (CPP) interaction is strong, and remains stable in vivo. They can be used to modify different proteins, respectively, and subsequently, by simply mixing the modified proteins, a protein-protein conjugate can be form via the stable heparin/CPP linkage. This linkage could not be broken unless addition of protamine that bears higher cationic charge density than CPP, and CPP thus can be substituted and released. Of note, heparin is a potent antagonist of CPP, and their binding naturally inhibits CPP-mediated drug cell penetration. Based on this method, we developed a heparin-regulated macromolecular prodrug-type system, termed ATTEMPTS, for drug targeting delivery. In this review article, we mainly summary the application of ATTEMPTS in delivery of various macromolecular drugs for cancer therapy, and also introduce the heparin-regulated nanoprobes for tumor imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA