Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Environ Pollut ; : 124287, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823547

RESUMO

Acadia National Park (ANP) is located on Mt. Desert Island, ME on the U.S. Atlantic coast. ANP is routinely a top-ten most popular National Park with over four million visits in 2022. The overall contribution and negative effects of long-range atmospheric transport and local sources of dioxin-like contaminants endangering natural and wildlife resources is unknown. Dioxin-like (DL) contaminants polychlorinated dibenzo-p-dioxins (∑PCDD) and polychlorinated dibenzofurans (∑PCDF), non-ortho coplanar PCBs (∑CP4), and polychlorinated naphthalenes (∑PCNs) were measured at the McFarland Hill air monitoring station (44.37°N, 68.26°W). On a mass/volume basis, total PCNs averaged 90.9 % (788 fg/m3) of DL contaminants measured annually, with 92.9 % of the collected total in the vapor-phase. Alternatively, total dioxin/furans (∑PCDD/Fs) represented 71.6 % of the total toxic equivalence (∑TEQ) (1.018 fg-TEQ/m3), with 69.7 % in the particulate-phase. Maximum concentrations measured for individual sampling events for ∑PCDD/F, ∑CP4, and ∑PCN were 159 (winter), 139 (summer), and 2100 (autumn), fg/m3 respectively. Whereas the maximum ∑TEQ concentrations for individual sampling events for ∑PCDD/F, ∑CP4, and ∑PCN were 2.8 (autumn), 0.38 (summer), and 0.71 (autumn), fg-TEQ/m3 respectively. Pearson correlations were calculated for ∑PCDD/Fs and ∑PCN particulate/vapor-phase air concentrations and PM2.5 wood smoke "indicator" species. The most significant correlations were observed in autumn for particulate-phase ∑PCDD/Fs suggesting a relationship between visitation-generated combustion sources (campfires and/or waste burning) or climate-change mediated forest fires. Significant Clausius-Clapeyron (C-C) correlations observed for particulate-phase ∑PCDDs (r2=0.567) as ambient temperatures decreased suggests a connection between localized domestic heating sources or visitor-based burning of wood/trash resources. Alternatively, highly significant C-C vapor-phase ∑CP4-PCBs correlations (r2=0.815) implies that the majority of ∑CP4-PCB loading to ANP is from long-range atmospheric transport processes. Based on these findings, Acadia National Park should be classified as a remote site with minor depositional impacts from ∑PCDD/Fs, ∑CP4-PCBs, and ∑PCN atmospheric transport or local diffuse sources.

3.
Environ Sci Pollut Res Int ; 31(26): 38358-38366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801611

RESUMO

Concentrations of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) were analyzed and investigated in surficial sediment collected in 2018 from ten different nearshore sites in Lake Ontario and the St. Lawrence River influenced by inputs from varying urban and historical land uses. Sites were grouped into two categories of tributary and lake according to their location. Results show that tributary sites had higher concentrations of total chlorinated paraffin (CP) than lake sites. Humber Bay, a lake site, had the highest total CP concentration (55,000 ng/gTOC) followed by Humber River, a tributary site (50,000 ng/gTOC). The lowest concentrations were found in eastern Lake Ontario and Lake St. Francis in the St. Lawrence River (540 ng/gTOC). Higher concentrations of chlorinated paraffins (CPs) were found where runoff and wastewater inputs from urban areas, current industrial activities, and population were the greatest. Levels of MCCPs were higher than SCCPs at all sites but one, Lake St. Francis. Among the SCCPs, C13 and among the MCCPs C14 were the dominant chain length alkanes, with C14 being the highest among both groups. The SCCPs and MCCPs profiles suggest that they can be used to distinguish between sites impacted by local sources vs. sites impacted by short-/long-range transport of these chemicals.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Parafina , Poluentes Químicos da Água , Lagos/química , Parafina/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Ontário , Hidrocarbonetos Clorados/análise
5.
Sci Rep ; 14(1): 6006, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472411

RESUMO

Rivers are the natural drainage system, transporting anthropogenic wastes and pollution, including microplastics (plastic < 5 mm). In a riverine system, microplastics can enter from different sources, and have spatial variance in concentration, physical and chemical properties, and imposed risk to the ecosystem. This pilot study presents an examination of microplastics in water and sediment samples using a single sample collection from the rural Raquette River, NY to evaluate a hypothesis that distinct locations of the river, such as downstream of a wastewater treatment plant, upstream of a hydro-dam, and river confluence, may be locations of higher microplastics concentration. In general, our results revealed the presence of high microplastic concentrations downstream of the wastewater treatment plant (in sediments), upstream of the hydro dam (both water and sediment), and in the river confluence (water sample), compared to other study sites. Moreover, the risk assessment indicates that even in a rural river with most of its drainage basin comprising forested and agricultural land, water, and sediment samples at all three locations are polluted with microplastics (pollution load index, PLI > 1; PLIzone = 1.87 and 1.68 for water and sediment samples respectively), with risk categories between Levels I and IV ("minor" to "danger"). Overall, the river stands in a "considerable" risk category (PRIzone = 134 and 113 for water and sediment samples respectively). The overall objective of this pilot study was to evaluate our hypothesis and advance our understanding of microplastic dynamics in rural river systems, elucidating their introduction from a point source (wastewater treatment plant), transit through an impediment (hydro-dam), and release into a vital transboundary river (confluence of Raquette-St. Lawrence Rivers).

6.
Sci Total Environ ; 920: 171053, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38378060

RESUMO

Although it is evident that PM2.5 has serious adverse health effects, there is no consensus on what the biologically effective dose is. In this study, the intrinsic oxidative potential (OPm) and the extrinsic oxidative potential (OPv) of PM2.5 were measured using three chemical assays including dithiothreitol (DTT), ascorbic acid (AA), and reduced glutathione (GSH), along with chemical compositions of PM2.5 in South Korea. Among the three chemical assays, only OPmAA showed a statistically significant correlation with PM2.5 while OPmGSH and OPmDTT were not correlated with PM2.5 mass concentration. When the samples were categorized by PM2.5 mass concentrations, the variations in the proportion of Ni, As, Mn, Cd, Pb, and Se to PM2.5 mass closely coincided with changes in OPm across all three assays, suggesting a potential association between these elements and PM2.5 OP. Multiple linear regression analysis identified the significant PM components affecting the variability in extrinsic OPv. OPvAA was determined to be significantly influenced by EC, K+, and Ba while OC and Al were common significant factors for OPvGSH and OPvDTT. It was also found that primary OC was an important variable for OPvDTT while secondary OC significantly affected the variability of OPvGSH.

7.
Environ Sci Technol ; 57(34): 12901-12910, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37579514

RESUMO

Electrical discharge plasma reactors with argon bubbling can effectively treat long-chain perfluoroalkyl acids (PFAAs) in contaminated water, and the addition of a cationic surfactant cetrimonium bromide (CTAB) is known to enhance the removal of short-chain PFAAs. However, the roles of PFAA chain length, functional group, and water matrix properties on PFAA-CTAB complexation are largely unknown. This work investigated the bulk liquid removal of different PFAAs by CTAB in the absence of plasma. Stepwise addition of CTAB was subsequently used to efficiently treat PFAAs in a lab-prepared water and a reverse osmosis (RO) reject water using an enhanced contact plasma reactor. The results show that CTAB inhibited the bulk liquid removal of long-chain PFAAs in the absence of plasma likely due to the formation of hydrophilic CTAB-PFAA mixed micelles and competition for interfacial access between long-chain PFAAs and CTAB. On the contrary, CTAB enhanced the removal of short- and ultrashort-chain PFAAs by forming hydrophobic complexes. After 6 h of treatment in the plasma reactor with CTAB, PFAAs were 86 to >99% removed from the lab-prepared water and 29 to >99% removed from the RO reject water. This study provides important insights for overcoming mass transfer limitations for PFAA treatment technologies.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Água/química , Fluorocarbonos/análise , Cetrimônio , Poluentes Químicos da Água/análise , Osmose
8.
J Hazard Mater ; 456: 131691, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236102

RESUMO

This study investigates the degradation of perfluorobutane sulfonate (PFBS), a chemical compound belonging to a group of per- and polyfluoroalkyl substances (PFAS), by gas-phase electrical discharge plasma. Plasma alone was ineffective in degrading PFBS due to its poor hydrophobicity, which inhibited the compound from accumulating at the plasma-liquid interface, the region of chemical reactivity. To overcome bulk liquid mass transport limitations, a surfactant, hexadecyltrimethylammonium bromide (CTAB), was introduced to interact with and transport PFBS to the plasma-liquid interface. In the presence of CTAB, ∼99% of PFBS was removed from the bulk liquid and concentrated at the interface, where 67% of the concentrate was degraded and 43% of that amount was defluorinated within one hour. PFBS degradation was further improved by optimizing the surfactant concentration and dosage. Experiments with a range of cationic, non-ionic, and anionic surfactants revealed that the PFAS-CTAB binding mechanism is predominantly electrostatic. A mechanistic understanding of the PFAS-CTAB complex formation, its transport to and destruction at the interface is proposed, alongside the chemical degradation scheme, which includes the identified degradation byproducts. This study shows that surfactant-assisted plasma treatment is one of the most promising techniques for destroying short-chain PFAS in contaminated water.

9.
Environ Sci Technol Lett ; 10(2): 198-203, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37034438

RESUMO

Studies on the destruction of solid per- and polyfluoroalkyl substances (PFAS) chemicals and PFAS-laden solid wastes significantly lag behind the urgent social demand. There is a great need to develop novel treatment processes that can destroy nonaqueous PFAS at ambient temperatures and pressures. In this study, we develop a piezoelectric-material-assisted ball milling (PZM-BM) process built on the principle that ball collisions during milling can activate PZMs to generate ∼kV potentials for PFAS destruction in the absence of solvents. Using boron nitride (BN), a typical PZM, as an example, we successfully demonstrate the complete destruction and near-quantitative (∼100%) defluorination of solid PFOS and perfluorooctanoic acid (PFOA) after a 2 h treatment. This process was also used to treat PFAS-contaminated sediment. Approximately 80% of 21 targeted PFAS were destroyed after 6 h of treatment. The reaction mechanisms were determined to be a combination of piezo-electrochemical oxidation of PFAS and fluorination of BN. The PZM-BM process demonstrates many potential advantages, as the degradation of diverse PFAS is independent of functional group and chain configurations and does not require caustic chemicals, heating, or pressurization. This pioneering study lays the groundwork for optimizing PZM-BM to treat various PFAS-laden solid wastes.

10.
Sci Total Environ ; 875: 162337, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848995

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a diverse family of industrially significant synthetic chemicals infamous for extreme environmental persistence and global environmental distribution. Many PFAS are bioaccumulative and biologically active mainly due to their tendency to bind with various proteins. These protein interactions are important in determining the accumulation potential and tissue distribution of individual PFAS. Trophodynamics studies including aquatic food webs present inconsistent evidence for PFAS biomagnification. This study strives to identify whether the observed variability in PFAS bioaccumulation potential among species could correspond with interspecies protein composition differences. Specifically, this work compares the perfluorooctane sulfonate (PFOS) serum protein binding potential and the tissue distribution of ten perfluoroalkyl acids (PFAAs) detected in alewife (Alosa pseudoharengus), deepwater sculpin (Myoxocephalus thompsonii), and lake trout (Salvelinus namaycush) of the Lake Ontario aquatic piscivorous food web. These three fish sera and fetal bovine reference serum all had unique total serum protein concentrations. Serum protein-PFOS binding experiments showed divergent patterns between fetal bovine serum and fish sera, suggesting potentially two different PFOS binding mechanisms. To identify interspecies differences in PFAS-binding serum proteins, fish sera were pre-equilibrated with PFOS, fractionated by serial molecular weight cut-off filter fractionation, followed by liquid chromatography-tandem mass spectrometry analysis of the tryptic protein digests and the PFOS extracts of each fraction. This workflow identified similar serum proteins for all fish species. However, serum albumin was only identified in lake trout, suggesting apolipoproteins are likely the primary PFAA transporters in alewife and deepwater sculpin sera. PFAA tissue distribution analysis provided supporting evidence for interspecies variations in lipid transport and storage, which may also contribute to the varied PFAA accumulation in these species. Proteomics data are available via ProteomeXchange with identifier PXD039145.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Cadeia Alimentar , Proteoma/metabolismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes/metabolismo , Fluorocarbonos/análise , Ácidos Alcanossulfônicos/análise
11.
Environ Pollut ; 317: 120677, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400140

RESUMO

The bioaccumulation and biomagnification of perfluoroalkyl substances (PFAS) in the Lake Erie food web was investigated by analyzing surface water and biological samples including 10 taxa of fish species, 2 taxa of benthos and zooplankton. The carbon (δ13C) and nitrogen (δ15N) isotopic composition and fatty acids profiles of biological samples were used to evaluate the food web structure and assess the biomagnification of PFAS. Perfluorooctane sulfonate (PFOS) dominated the total PFAS (ΣPFAS) concentration (50-90% of ΣPFAS concentration), followed by C9-C11 perfluorinated carboxylic acids (PFCAs). The highest PFOS concentrations (79 ± 4.8 ng/g, wet weight (wwt)) and ΣPFAS (88 ± 5.2 ng/g, wwt) were detected in yellow perch (Perca flavescens). The C8-C14 PFAS biomagnification factors (BMFs) between apex piscivorous fish and prey fish were found to be generally greater than 1, indicative of PFAS biomagnification, while biodilution (BMF<1) was observed between planktivorous fish and zooplankton. Trophic magnification factors (TMFs) of C8-C14 PFCA were not correlated with perfluoroalkyl chain length. The C4-C9 PFAS were detected in the surface water of Lake Erie, and PFBA was found to have the highest concentrations (2.1-2.8 ng/L) among all PFAS detected. The log of bioaccumulation factor (BAF) was found to generally increase with increasing log Kow for C6, 8, and 9 PFAS in all selected species from three tropic levels.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Percas , Poluentes Químicos da Água , Animais , Lagos , Bioacumulação , Cadeia Alimentar , Monitoramento Ambiental , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Água , Ácidos Alcanossulfônicos/análise , Zooplâncton
12.
Environ Sci Technol ; 56(24): 17626-17634, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468978

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are globally distributed in the natural environment, and their persistent and bioaccumulative potential illicit public concern. The production of certain PFAS has been halted or controlled by regulation due to their adverse effect on the health of humans and wildlife. However, new PFAS are continuously developed as alternatives to legacy PFAS. Additionally, many precursors are unknown, and their metabolites have not been assessed. To better understand the PFAS profiles in the Lake Ontario (LO) aquatic food web, a quadrupole time-of-flight mass spectrometer (QToF) coupled to ultrahigh-performance liquid chromatography (UPLC) was used to generate high-resolution mass spectra (HRMS) from sample extracts. The HRMS data files were analyzed using an isotopic profile deconvoluted chromatogram (IPDC) algorithm to isolate PFAS profiles in aquatic organisms. Fourteen legacy PFAAs (C5-C14) and 15 known precursors were detected in the LO food web. In addition, over 400 unknown PFAS features that appear to biomagnify in the LO food web were found. Profundal benthic organisms, deepwater sculpin(Myoxocephalus thompsonii), and Mysis were found to have more known precursors than other species in the food web, suggesting that there is a large reservoir of fluorinated substances in the benthic zone.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Ontário , Lagos/análise , Cadeia Alimentar , Fluorocarbonos/análise , Cromatografia Líquida , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 819: 152974, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007599

RESUMO

Polyfluoroalkyl substances (PFAS) are a group of fluorinated organic chemicals that have been produced for industrial and commercial application since the 1950s. PFAS are highly persistent and ubiquitous in water, sediment, and biota. Toxic effects of PFAS on humans and the ecosystem have increased scientific and public concern. To better understand the distribution of PFAS in the Laurentian Great Lakes, carbon (12C and 13C) and nitrogen (14N and 15N) stable isotope enrichment, fatty acid profiles, and PFAS were measured in the Lake Huron (LH) aquatic food web. The trophic level of the organisms was estimated using δ15N and found to be a determinant of PFAS biomagnification. The δ13C and fatty acid profiles were used to assess the carbon/energy flow pathway and predator-prey relationships, respectively. The δ13C, δ15N, and fatty acids were used to elucidate the trophodynamics and understand the PFAS trophic transfer in the LH aquatic food web. Perfluorooctanesulfonic acid (PFOS) was the dominant PFAS observed, followed by C9 - C11 perfluorinated carboxylic acids (PFCA). The highest PFOS concentrations (45 ± 11 ng/g, wet weight (wwt)) were detected in lake trout (Salvelinus namaycush), while the highest total PFCA concentrations (sum of C4 - C16 PFCAs) were detected in deepwater sculpin (Myoxocephalus thompsonii). With the exception of perfluorooctanoic acid (PFOA), C8-C14 PFAS biomagnification factors (BMFs) were found to be generally greater than 1, suggesting PFAS biomagnification from prey to predator. Trophic magnification factors (TMFs) of C8-C14 PFCA were found to be independent of compound hydrophobicity.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Cadeia Alimentar , Lagos/química , Poluentes Químicos da Água/análise
14.
Proteomics ; 22(4): e2100146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34676671

RESUMO

Lake trout (Salvelinus namaycush) are a top-predator species in the Laurentian Great Lakes that are often used as bioindicators of chemical stressors in the ecosystem. Although many studies are done using these fish to determine concentrations of stressors like legacy persistent, bioaccumulative and toxic chemicals, there are currently no proteomic studies on the biological effects these stressors have on the ecosystem. This lack of proteomic studies on Great Lakes lake trout is because there is currently no complete, comprehensive protein database for this species. Here, we employed proteomics approaches to develop a lake trout protein database that could aid in future research on this fish, in particular exposomics and adductomics. The current study utilized heart tissue and blood from two lake trout. Our previous work using lake trout liver revealed 4194 potential protein hits in the NCBI databases and 3811 potential protein hits in the UniProtKB databases. In the current study, using the NCBI databases we identified 838 proteins for the heart and 580 proteins for the blood tissues in the biological replicate 1 (BR1) and 1180 potential protein hits for the heart and 561 potential protein hits for the blood in BR2. Similar results were obtained using the UniProtKB databases. This study builds on our previous work by continuing to build the first comprehensive lake trout protein database and provides insight into protein homology through evolutionary relationships. This data is available via the PRIDE partner repository with the dataset identifier PXD023970.


Assuntos
Ecossistema , Proteômica , Animais , Bases de Dados de Proteínas , Lagos , Truta/metabolismo
15.
Environ Sci Technol ; 55(24): 16390-16401, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846854

RESUMO

Halogenated organic compounds (HOCs) in marine species collected from the Atlantic Ocean [3 shortfin mako (Isurus oxyrinchus) and 1 porbeagle (Lamna nasus)], and 12 sea turtles collected from the Pacific Ocean [3 loggerhead (Caretta caretta), 3 green (Chelonia mydas), 3 olive ridley (Lepidochelys olivacea), and 3 hawksbill (Eretmochelys imbricata)] were analyzed with a nontargeted analytical method using two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Sharks and sea turtles had distinct HOC profiles. Halogenated methoxyphenols (halo-MeOPs) were the most abundant compound class identified in sea turtle livers, while polychlorinated biphenyls (PCBs) were the most abundant in shark livers. In addition to legacy contaminants and halo-MeOPs, a total of 110 nontargeted/novel HOCs (NHOCs) were observed in the shark livers. Shortfin mako collected from the northern Gulf of Mexico contained the largest number (89) and most diverse structural classes of NHOCs. Among all NHOCs, a group of compounds with the elemental composition C14H12-nCln (n = 5-8) exhibited the highest concentrations, followed by chlorocarbazoles and tris(chlorophenyl) methanes (TCPMs). Using nontargeted workflows, a variety of known and unknown HOCs were observed, which demonstrate the need to develop more complete chemical profiles in the marine environment.


Assuntos
Bifenilos Policlorados , Tubarões , Tartarugas , Animais , Oceano Atlântico , Compostos Orgânicos
16.
Environ Sci Technol ; 55(22): 15162-15171, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34714637

RESUMO

Harmful per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in aquatic environments, but their remediation remains challenging. Metal-organic frameworks (MOFs) have been recently identified as an advanced material class for the efficient removal of PFAS, but little is known about the fundamentals of the PFAS@MOF adsorption process. To address this knowledge gap, we evaluated the performance of 3 different MOFs for the removal of 8 PFAS classes from aqueous film-forming foam-impacted groundwater samples obtained from 11 U.S. Air Force installations. Due to their different pore sizes/shapes and the identity of metal node, MOFs NU-1000, UiO-66, and ZIF-8 were selected to investigate the role of MOF structures, PFAS properties, and water matrix on the PFAS@MOF adsorption process. We observed that PFAS@MOF adsorption is (i) dominated by electrostatic and acid-base interactions for anionic and non-ionic PFAS, respectively, (ii) preferred for long- over short-chain PFAS, (iii) strongly dependent on the nature of PFAS head group functionality, and (iv) compromised in the presence of ionic and neutral co-contaminants by competing for ion-exchange sites and PFAS binding. With this study, we elucidate the PFAS@MOF adsorption mechanism from complex water sources to guide the design of more efficient MOFs for the treatment of PFAS-contaminated water bodies.


Assuntos
Fluorocarbonos , Água Subterrânea , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 778: 146151, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711592

RESUMO

This work presents the first assessment of temporal trends (2005-2016) for perfluoroalkyl acids (PFAAs) in top predator fish of the Laurentian Great Lakes except Lake Ontario, for which we provide a post-2008 update. Lake trout (Salvelinus namaycush) or walleye (Sander vitreus; Lake Erie only) collected annually from 2005 to 2016 were analyzed for 12 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkyl sulfonic acids (PFSAs) with carbon chain lengths between 4 and 16 (C4-C16). Individual analyte concentrations generally decreased in fish basin-wide between 2005 and 2016, including Lake Ontario lake trout previously found to lack declining PFAA concentrations up until 2008. Declining fish PFAA burden reflects a positive response to the industrial phase-outs of these chemicals. Notable exceptions to this general decline included most analytes in lake trout collected from Lake Superior near Keweenaw Point and C6 and C8 PFSAs and C9 PFCAs in Lake Erie lake trout and walleye, which exhibited constant or increasing concentrations in recent years. Recent increases in Lake Superior shoreline development and mobilization from increased sediment resuspension and contamination from biosolids-amended agricultural soils in the Lake Erie watershed are plausible explanations for these cases. However, data scarcity prohibits confirmation of these suspected causes. The lingering lack of declining concentrations noted in this study together with the ongoing evolution of the fluorinated chemical industry emphasize the vigilance needed to better understand how past and future emissions will affect the Great Lakes and global ecosystems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Great Lakes Region , Lagos , Ontário , Poluentes Químicos da Água/análise
18.
Environ Sci Technol ; 55(6): 3765-3774, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33646760

RESUMO

Sport fish fillets and human sera (fish consumers) were collected in the Lake Superior and Lake Michigan basin and screened for novel contaminants using the isotopic profile deconvoluted chromatogram (IPDC) algorithm. The IPDC algorithm was extended beyond traditional Cl/Br filters to detect additional potential bioaccumulative and toxic (PBT) such as perfluoroalkyl substances (PFAS). The IPDC algorithm screened for approximately 13.5 million theoretical molecular formulas. Additional algorithm modules were developed to detect data independent MS/MS fragmentation products and a retention time index calculator using a series of 13C-labeled perfluoroalkyl carboxylic acids (13C-PFCAs). Ten potential compound classes were isolated including six untargeted PFAS, six homologue groups of polyfluorinated carboxylic acids, polyfluorinated telomer alcohols (PoFTOHs), two hydroxylated polychlorobiphenyls, pesticides, herbicides, antifungals, pharmaceuticals, artificial sweeteners, and personal care products with minimal postprocessing efforts. The algorithm isolated 48 ubiquitous PoFTOHs in both fish fillet and serum of fish consumers suggesting a region wide distribution of this class of compounds. The 3, 4, and 7 fluorine substituted PoFTOH were the most abundant congeners in both biological matrices.


Assuntos
Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Great Lakes Region , Humanos , Lagos , Michigan , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
19.
J Hazard Mater ; 408: 124452, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243646

RESUMO

A bench-scale plasma reactor was used to degrade poly- and perfluoroalkyl substances (PFAS) in landfill leachate samples obtained from three different locations. In the leachate samples before treatment, five long-chain, six short-chain perfluoroalkyl acids (PFAAs) and eight PFAA precursors were detected in a wide concentration range (~102 to 105 ng/L; total oxidizable precursors (TOP) ~106 ng/L). The concentration of perfluorooctane sulfonate (PFOS) plus perfluorooctanoic acid (PFOA) ranged between 2000 and 3000 ng/L. Plasma-based water treatment of 500 mL samples resulted in faster removal rates for longer-chain than shorter chain length PFAAs. Both PFOS and PFOA were removed to below United States Environmental Protection Agency's (USEPA's) health advisory concentration level (HAL) concentrations (<70 ng/L) in 10-75 min; 90% PFOA and PFOS removal was achieved in 10 min. Long-chain and short-chain PFAAs were removed by >99.9% and 10-99.9%, respectively. The removal rate constant (kPFOA+PFOS) for combined PFOA and PFOS ranged between 0.20 and 0.34 min-1. Overall, 60 ± 2% of the TOP concentration and 34 ± 2% of the TOC were removed. No effect of non-PFAS co-contaminants (e.g., total initial organic carbon concentration ~2000 mg/L) on the degradation efficiency was observed. Short-chain PFAA removal efficacy was enhanced by adding a cationic surfactant (cetrimonium bromide). Overall, the results indicate that plasma-based technology may be a viable technology for the treatment of PFAS-contaminated landfill leachates.

20.
Environ Sci Technol ; 54(23): 15035-15045, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33167618

RESUMO

Fish have been used for decades as bioindicators for assessing toxic contaminants in the Great Lakes ecosystem. Routine environmental monitoring programs target predetermined compounds that do not reflect the complete exposure of chemicals to biota and do not provide the complete halogenated fingerprint of the biota. In the current work, a nontargeted screening method was developed using a two-dimensional gas chromatograph coupled to a high-resolution time-of-flight mass spectrometer and was applied to 149 edible fish fillets from different species in the Great Lakes to characterize a more robust set of halogenated organic compounds across species and among lakes. Lake Ontario had the largest number of novel halogenated organic compounds (NHOCs). Seven NHOCs were observed in species from all lakes, indicating that this regional signature was not species-dependent. Hierarchical cluster analysis showed identical NHOC profiles between bottom dwelling and pelagic species. The NHOCs were grouped into seven clusters with similar structures and potentially similar environmental behaviors. Seven of the 29 NHOCs likely containing methoxy or ethoxy groups on a benzene or benzene-methanol backbone were clustered into one group with similar retention times. Five NHOCs were clustered with legacy contaminants that likely have similar structures or are their degradation products.


Assuntos
Lagos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Peixes , Great Lakes Region , Ontário , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA