Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542109

RESUMO

The combination of signals from the T-cell receptor (TCR) and co-stimulatory molecules triggers transcriptional programs that lead to proliferation, cytokine secretion, and effector functions. We compared the impact of engaging the TCR with CD28 and/or CD43 at different time points relative to TCR engagement on T-cell function. TCR and CD43 simultaneous engagement resulted in higher CD69 and PD-1 expression levels than in TCR and CD28-stimulated cells, with a cytokine signature of mostly effector, inflammatory, and regulatory cytokines, while TCR and CD28-activated cells secreted all categories of cytokines, including stimulatory cytokines. Furthermore, the timing of CD43 engagement relative to TCR ligation, and to a lesser degree that of CD28, resulted in distinct patterns of expression of cytokines, chemokines, and growth factors. Complete cell activation was observed when CD28 or CD43 were engaged simultaneously with or before the TCR, but ligating the TCR before CD43 or CD28 failed to complete a cell activation program regarding cytokine secretion. As the order in which CD43 or CD28 and the TCR were engaged resulted in different combinations of cytokines that shape distinct T-cell immune programs, we analyzed their upstream sequences to assess whether the combinations of cytokines were associated with different sets of regulatory elements. We found that the order in which the TCR and CD28 or CD43 are engaged predicts the recruitment of specific sets of chromatin remodelers and TFSS, which ultimately regulate T-cell polarization and plasticity. Our data underscore that the combination of co-stimulatory molecules and the time when they are engaged relative to the TCR can change the cell differentiation program.


Assuntos
Antígenos CD28 , Receptores de Antígenos de Linfócitos T , Antígenos CD28/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Ativação Linfocitária , Diferenciação Celular , Citocinas/metabolismo
2.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982461

RESUMO

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.


Assuntos
Gastrulação , Organogênese , Camundongos , Animais , Diferenciação Celular , Organogênese/genética , Linha Primitiva , Endotélio , Embrião de Mamíferos , Mamíferos
3.
Cell Stem Cell ; 30(10): 1351-1367.e10, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802039

RESUMO

Progression through fate decisions determines cellular composition and tissue architecture, but how that same architecture may impact cell fate is less clear. We took advantage of organoids as a tractable model to interrogate this interaction of form and fate. Screening methodological variations revealed that common protocol adjustments impacted various aspects of morphology, from macrostructure to tissue architecture. We examined the impact of morphological perturbations on cell fate through integrated single nuclear RNA sequencing (snRNA-seq) and spatial transcriptomics. Regardless of the specific protocol, organoids with more complex morphology better mimicked in vivo human fetal brain development. Organoids with perturbed tissue architecture displayed aberrant temporal progression, with cells being intermingled in both space and time. Finally, encapsulation to impart a simplified morphology led to disrupted tissue cytoarchitecture and a similar abnormal maturational timing. These data demonstrate that cells of the developing brain require proper spatial coordinates to undergo correct temporal progression.


Assuntos
Encéfalo , Organoides , Humanos , Diferenciação Celular , Análise de Sequência de RNA
4.
Science ; 381(6659): eadd7564, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590359

RESUMO

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Assuntos
Desenvolvimento Embrionário , Saco Vitelino , Feminino , Humanos , Gravidez , Coagulação Sanguínea/genética , Macrófagos , Saco Vitelino/citologia , Saco Vitelino/metabolismo , Desenvolvimento Embrionário/genética , Atlas como Assunto , Expressão Gênica , Perfilação da Expressão Gênica , Hematopoese/genética , Fígado/embriologia
5.
Nat Cell Biol ; 25(7): 1061-1072, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37322291

RESUMO

Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research.


Assuntos
Gastrulação , Organogênese , Coelhos , Humanos , Animais , Camundongos , Gastrulação/genética , Organogênese/genética , Implantação do Embrião/genética , Embrião de Mamíferos , Diferenciação Celular , Desenvolvimento Embrionário/genética , Mamíferos
6.
Genome Biol ; 22(1): 197, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225769

RESUMO

BACKGROUND: Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. RESULTS: Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. CONCLUSIONS: By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.


Assuntos
Células Eritroides/metabolismo , Eritropoese/genética , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Animais , Diferenciação Celular , Conjuntos de Dados como Assunto , Embrião de Mamíferos , Células Eritroides/citologia , Feto , Fator de Transcrição GATA1/deficiência , Gástrula/crescimento & desenvolvimento , Gástrula/metabolismo , Humanos , Cinética , Fígado/citologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Análise de Célula Única , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional
8.
Nat Cell Biol ; 23(1): 61-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33420489

RESUMO

Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.


Assuntos
Células-Tronco Embrionárias/citologia , Hemangioblastos/citologia , Mesoderma/citologia , Proteínas com Domínio T/fisiologia , Saco Vitelino/citologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Hemangioblastos/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos Knockout , Gravidez , RNA-Seq , Análise de Célula Única , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Saco Vitelino/metabolismo
9.
Dev Cell ; 56(1): 141-153.e6, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308481

RESUMO

Somite formation is foundational to creating the vertebrate segmental body plan. Here, we describe three transcriptional trajectories toward somite formation in the early mouse embryo. Precursors of the anterior-most somites ingress through the primitive streak before E7 and migrate anteriorly by E7.5, while a second wave of more posterior somites develops in the vicinity of the streak. Finally, neuromesodermal progenitors (NMPs) are set aside for subsequent trunk somitogenesis. Single-cell profiling of T-/- chimeric embryos shows that the anterior somites develop in the absence of T and suggests a cell-autonomous function of T as a gatekeeper between paraxial mesoderm production and the building of the NMP pool. Moreover, we identify putative regulators of early T-independent somites and challenge the T-Sox2 cross-antagonism model in early NMPs. Our study highlights the concept of molecular flexibility during early cell-type specification, with broad relevance for pluripotent stem cell differentiation and disease modeling.


Assuntos
Padronização Corporal/genética , Quimera/metabolismo , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Mesoderma/citologia , Fatores de Transcrição SOXB1/metabolismo , Somitos/citologia , Proteínas com Domínio T/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Quimera/embriologia , Quimera/genética , Embrião de Mamíferos , Feminino , Proteínas Fetais/genética , Perfilação da Expressão Gênica , Células Germinativas/citologia , Células Germinativas/metabolismo , Heterozigoto , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única , Somitos/metabolismo , Proteínas com Domínio T/genética , Transcriptoma/genética
10.
Nature ; 576(7787): 487-491, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31827285

RESUMO

Formation of the three primary germ layers during gastrulation is an essential step in the establishment of the vertebrate body plan and is associated with major transcriptional changes1-5. Global epigenetic reprogramming accompanies these changes6-8, but the role of the epigenome in regulating early cell-fate choice remains unresolved, and the coordination between different molecular layers is unclear. Here we describe a single-cell multi-omics map of chromatin accessibility, DNA methylation and RNA expression during the onset of gastrulation in mouse embryos. The initial exit from pluripotency coincides with the establishment of a global repressive epigenetic landscape, followed by the emergence of lineage-specific epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and endoderm undergo widespread coordinated epigenetic rearrangements at enhancer marks, driven by ten-eleven translocation (TET)-mediated demethylation and a concomitant increase of accessibility. By contrast, the methylation and accessibility landscape of ectodermal cells is already established in the early epiblast. Hence, regulatory elements associated with each germ layer are either epigenetically primed or remodelled before cell-fate decisions, providing the molecular framework for a hierarchical emergence of the primary germ layers.


Assuntos
Metilação de DNA , Epigênese Genética , Gástrula/citologia , Gástrula/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA/genética , Análise de Célula Única , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Cromatina/metabolismo , Desmetilação , Corpos Embrioides/citologia , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Elementos Facilitadores Genéticos/genética , Epigenoma/genética , Eritropoese , Análise Fatorial , Gástrula/embriologia , Gastrulação/fisiologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA/análise , Fatores de Tempo , Dedos de Zinco
11.
Gene ; 711: 143941, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31242453

RESUMO

Inorganic arsenic is a well-known carcinogen associated with several types of cancer, but the mechanisms involved in arsenic-induced carcinogenesis are not fully understood. Recent evidence points to epigenetic dysregulation as an important mechanism in this process; however, the effects of epigenetic alterations in gene expression have not been explored in depth. Using microarray data and applying a multivariate clustering analysis in a Gaussian mixture model, we describe the alterations in DNA methylation around the promoter region and the impact on gene expression in HaCaT cells during the transformation process caused by chronic exposure to arsenic. Using this clustering approach, the genes were grouped according to their methylation and expression status in the epigenetic landscape, and the changes that occurred during the cellular transformation were identified adequately. Thus, we present a valuable method for identifying epigenomic dysregulation.


Assuntos
Arsênio/toxicidade , Transformação Celular Neoplásica/patologia , Metilação de DNA/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética
12.
Sci Rep ; 8(1): 10272, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980692

RESUMO

In prostate cancer (PCa), neuroendocrine cells (NE) have been associated with the progression of the disease due to the secretion of neuropeptides that are capable of diffusing and influence surrounding cells. The GABAergic system is enriched in NE-like cells, and contributes to PCa progression. Additionally, γ-aminobutyric acid (GABA) stimulates the secretion of gastrin-releasing peptide (GRP) in peripheral organs. For the first time, in this study we show the role of GABA and GABAB receptor 1 (GABBR1) expression in GRP secretion in NE-like prostate cancer cells. We demonstrated an increase in GRP levels in NE-like cell medium treated with GABAB receptor agonist. Moreover, the blocking of this receptor inhibited GABA-induced GRP secretion. The invasive potential of PC3 cells was enhanced by either GRP or conditioned medium of NE-like cells treated with GABA. Additionally, we confirmed a positive correlation between GABA and GRP levels in the serum of PCa patients with NE markers. Finally, using public available data sets, we found a negative correlation between GABBR1 and androgen receptor (AR) expression, as well as a strong positive correlation between GABBR1 and enolase 2. These results suggest that GABA via GABBR1 induces GRP secretion in NE like cells involved in PCa progression.


Assuntos
Adenocarcinoma/patologia , GABAérgicos/farmacologia , Peptídeo Liberador de Gastrina/metabolismo , Células Neuroendócrinas/patologia , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Ácido gama-Aminobutírico/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Idoso , Estudos de Coortes , Progressão da Doença , Humanos , Masculino , Pessoa de Meia-Idade , Células Neuroendócrinas/efeitos dos fármacos , Células Neuroendócrinas/metabolismo , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/genética , Receptores Androgênicos/química , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Células Tumorais Cultivadas
13.
BMC Med Genet ; 19(1): 28, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466957

RESUMO

BACKGROUND: Obesity is a well-recognized risk factor for insulin resistance and type 2 diabetes (T2D), although the precise mechanisms underlying the relationship remain unknown. In this study we identified alterations of DNA methylation influencing T2D pathogenesis, in subcutaneous and visceral adipose tissues, liver, and blood from individuals with obesity. METHODS: The study included individuals with obesity, with and without T2D. From these patients, we obtained samples of liver tissue (n = 16), visceral and subcutaneous adipose tissues (n = 30), and peripheral blood (n = 38). We analyzed DNA methylation using Illumina Infinium Human Methylation arrays, and gene expression profiles using HumanHT-12 Expression BeadChip Arrays. RESULTS: Analysis of DNA methylation profiles revealed several loci with differential methylation between individuals with and without T2D, in all tissues. Aberrant DNA methylation was mainly found in the liver and visceral adipose tissue. Gene ontology analysis of genes with altered DNA methylation revealed enriched terms related to glucose metabolism, lipid metabolism, cell cycle regulation, and response to wounding. An inverse correlation between altered methylation and gene expression in the four tissues was found in a subset of genes, which were related to insulin resistance, adipogenesis, fat storage, and inflammation. CONCLUSIONS: Our present findings provide additional evidence that aberrant DNA methylation may be a relevant mechanism involved in T2D pathogenesis among individuals with obesity.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Obesidade/genética , Adipogenia , Adulto , Índice de Massa Corporal , Ilhas de CpG , Epigênese Genética , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Transcriptoma
14.
PLoS One ; 12(7): e0180419, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28692701

RESUMO

Since the emergence of the pandemic H1N1pdm09 virus in Mexico and California, biannual increases in the number of cases have been detected in Mexico. As observed in previous seasons, pandemic A/H1N1 09 virus was detected in severe cases during the 2011-2012 winter season and finally, during the 2013-2014 winter season it became the most prevalent influenza virus. Molecular and phylogenetic analyses of the whole viral genome are necessary to determine the antigenic and pathogenic characteristics of influenza viruses that cause severe outcomes of the disease. In this paper, we analyzed the evolution, antigenic and genetic drift of Mexican isolates from 2009, at the beginning of the pandemic, to 2014. We found a clear variation of the virus in Mexico from the 2011-2014 season due to different markers and in accordance with previous reports. In this study, we identified 13 novel substitutions with important biological effects, including virulence, T cell epitope presented by MHC and host specificity shift and some others substitutions might have more than one biological function. The systematic monitoring of mutations on whole genome of influenza A pH1N1 (2009) virus circulating at INER in Mexico City might provide valuable information to predict the emergence of new pathogenic influenza virus.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Estações do Ano , Substituição de Aminoácidos/genética , Antígenos Virais/imunologia , Demografia , Feminino , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Funções Verossimilhança , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Filogenia , Prevalência , Análise de Sequência de DNA
15.
PLoS One ; 12(4): e0176284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448553

RESUMO

The liver and the kidney are the most common targets of chemical toxicity, due to their major metabolic and excretory functions. However, since the liver is directly involved in biotransformation, compounds in many currently and normally used drugs could affect it adversely. Most chemical compounds are already labeled according to FDA-approved labels using DILI-concern scale. Drug Induced Liver Injury (DILI) scale refers to an adverse drug reaction. Many compounds do not exhibit hepatotoxicity at early stages of development, so it is important to detect anomalies at gene expression level that could predict adverse reactions in later stages. In this study, a large collection of microarray data is used to investigate gene expression changes associated with hepatotoxicity. Using TG-GATEs a large-scale toxicogenomics database, we present a computational strategy to classify compounds by toxicity levels in human and animal models through patterns of gene expression. We combined machine learning algorithms with time series analysis to identify genes capable of classifying compounds by FDA-approved labeling as DILI-concern toxic. The goal is to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. The study illustrates that expression profiling can be used to classify compounds according to different hepatotoxic levels; to label those that are currently labeled as undertemined; and to determine if at the molecular level, animal models are a good proxy to predict hepatotoxicity in humans.


Assuntos
Citotoxinas/toxicidade , Bases de Dados Genéticas , Genômica/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Toxicogenética , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Fatores de Tempo , Aprendizado de Máquina não Supervisionado
16.
BMC Genomics ; 17(1): 956, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27875993

RESUMO

BACKGROUND: Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. METHODS: Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. RESULTS: Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1ß, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. CONCLUSIONS: Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/genética , Infecções por HIV/imunologia , Memória Imunológica/genética , Transcriptoma , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Ciclo Celular/genética , Morte Celular/genética , Morte Celular/imunologia , Diferenciação Celular/genética , Senescência Celular/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Infecções por HIV/virologia , HIV-1 , Humanos , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/virologia
17.
PLoS Negl Trop Dis ; 10(3): e0004570, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27031998

RESUMO

An important NK-cell inhibition with reduced TNF-α, IFN-γ and TLR2 expression had previously been identified in patients with diffuse cutaneous leishmaniasis (DCL) infected with Leishmania mexicana. In an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL, this study aimed at identifying differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized and diffuse cutaneous leishmaniasis through gene expression profiling. Our results indicate that important genes involved in the innate immune response to Leishmania are down-regulated in NK cells from DCL patients, particularly TLR and JAK/STAT signaling pathways. This down-regulation showed to be independent of LPG stimulation. The study sheds new light for understanding the mechanisms that undermine the correct effector functions of NK cells in patients with diffuse cutaneous leishmaniasis contributing to a better understanding of the pathobiology of leishmaniasis.


Assuntos
Janus Quinases/metabolismo , Células Matadoras Naturais/fisiologia , Leishmania mexicana , Leishmaniose Tegumentar Difusa/metabolismo , Fatores de Transcrição STAT/metabolismo , Receptores Toll-Like/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/fisiologia , Humanos , Janus Quinases/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais/fisiologia , Transcriptoma
18.
PLoS One ; 10(5): e0127286, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011628

RESUMO

Cementum Protein 1 (CEMP1) is a key regulator of cementogenesis. CEMP1 promotes cell attachment, differentiation, deposition rate, composition, and morphology of hydroxyapatite crystals formed by human cementoblastic cells. Its expression is restricted to cementoblasts and progenitor cell subpopulations present in the periodontal ligament. CEMP1 transfection into non-osteogenic cells such as adult human gingival fibroblasts results in differentiation of these cells into a "mineralizing" cell phenotype. Other studies have shown evidence that CEMP1 could have a therapeutic potential for the treatment of bone defects and regeneration of other mineralized tissues. To better understand CEMP1's biological effects in vitro we investigated the consequences of its expression in human gingival fibroblasts (HGF) growing in non-mineralizing media by comparing gene expression profiles. We identified several mRNAs whose expression is modified by CEMP1 induction in HGF cells. Enrichment analysis showed that several of these newly expressed genes are involved in oncogenesis. Our results suggest that CEMP1 causes the transformation of HGF and NIH3T3 cells. CEMP1 is overexpressed in cancer cell lines. We also determined that the region spanning the CEMP1 locus is commonly amplified in a variety of cancers, and finally we found significant overexpression of CEMP1 in leukemia, cervix, breast, prostate and lung cancer. Our findings suggest that CEMP1 exerts modulation of a number of cellular genes, cellular development, cellular growth, cell death, and cell cycle, and molecules associated with cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Gengiva/metabolismo , Gengiva/patologia , Proteínas/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Humanos , Camundongos , Células NIH 3T3 , Proteínas/genética , RNA Mensageiro/genética , Regeneração/genética , Transcriptoma/genética
19.
BMC Genomics ; 16: 207, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25887408

RESUMO

BACKGROUND: Thyroid cancer (TC) is the most common malignant cancer of the Endocrine System. Histologically, there are three main subtypes of TC: follicular, papillary and anaplastic. Diagnosing a thyroid tumor subtype with a high level of accuracy and confidence is still a difficult task because genetic, molecular and cellular mechanisms underlying the transition from differentiated to undifferentiated thyroid tumors are not well understood. A genome-wide analysis of these three subtypes of thyroid carcinoma was carried out in order to identify significant differences in expression levels as well as enriched pathways for non-shared molecular and cellular features between subtypes. RESULTS: Inhibition of matrix metalloproteinases pathway is a major event involved in thyroid cancer progression and its dysregulation may result crucial for invasiveness, migration and metastasis. This pathway is drastically altered in ATC while in FTC and PTC, the most important pathways are related to DNA-repair activation or cell to cell signaling events. CONCLUSION: A progression from FTC to PTC and then to ATC was detected and validated on two independent datasets. Moreover, PTX3, COLEC12 and PDGFRA genes were found as possible candidates for biomarkers of ATC while GPR110 could be tested to distinguish PTC over other tumor subtypes. The genome-wide analysis emphasizes the preponderance of pathway-dysregulation mechanisms over simple gene-malfunction as the main mechanism involved in the development of a cancer phenotype.


Assuntos
Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Transdução de Sinais , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Biomarcadores , Comunicação Celular , Sobrevivência Celular/genética , Biologia Computacional , Bases de Dados Genéticas , Humanos , Anotação de Sequência Molecular , Gradação de Tumores , Curva ROC , Reprodutibilidade dos Testes , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia
20.
Cancer Discov ; 4(11): 1326-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25186949

RESUMO

UNLABELLED: Pediatric Ewing sarcoma is characterized by the expression of chimeric fusions of EWS and ETS family transcription factors, representing a paradigm for studying cancers driven by transcription factor rearrangements. In this study, we describe the somatic landscape of pediatric Ewing sarcoma. These tumors are among the most genetically normal cancers characterized to date, with only EWS-ETS rearrangements identified in the majority of tumors. STAG2 loss, however, is present in more than 15% of Ewing sarcoma tumors; occurs by point mutation, rearrangement, and likely nongenetic mechanisms; and is associated with disease dissemination. Perhaps the most striking finding is the paucity of mutations in immediately targetable signal transduction pathways, highlighting the need for new therapeutic approaches to target EWS-ETS fusions in this disease. SIGNIFICANCE: We performed next-generation sequencing of Ewing sarcoma, a pediatric cancer involving bone, characterized by expression of EWS-ETS fusions. We found remarkably few mutations. However, we discovered that loss of STAG2 expression occurs in 15% of tumors and is associated with metastatic disease, suggesting a potential genetic vulnerability in Ewing sarcoma.


Assuntos
Antígenos Nucleares/genética , Neoplasias Ósseas/genética , Sarcoma de Ewing/genética , Antígenos Nucleares/metabolismo , Neoplasias Ósseas/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Criança , DNA de Neoplasias/genética , Feminino , Rearranjo Gênico , Genômica , Humanos , Masculino , Mutação , Sarcoma de Ewing/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA