Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891055

RESUMO

Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.


Assuntos
Endossomos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Endossomos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Endocitose , Mutação/genética , Simulação por Computador , Proteína rhoA de Ligação ao GTP/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Imageamento Tridimensional , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Biológicos , Tropomiosina/metabolismo , Tropomiosina/genética
2.
Proc Natl Acad Sci U S A ; 121(19): e2317703121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687792

RESUMO

Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.


Assuntos
Aldeídos , Corantes Fluorescentes , Microscopia de Fluorescência , Mitocôndrias , Mitocôndrias/metabolismo , Humanos , Corantes Fluorescentes/química , Aldeídos/metabolismo , Aldeídos/química , Microscopia de Fluorescência/métodos , Células HeLa , Reagentes de Ligações Cruzadas/química , Animais , Membranas Mitocondriais/metabolismo
3.
Cell Death Differ ; 31(4): 469-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503846

RESUMO

One hallmark of apoptosis is the oligomerization of BAX and BAK to form a pore in the mitochondrial outer membrane, which mediates the release of pro-apoptotic intermembrane space proteins into the cytosol. Cells overexpressing BAX or BAK fusion proteins are a powerful model system to study the dynamics and localization of these proteins in cells. However, it is unclear whether overexpressed BAX and BAK form the same ultrastructural assemblies following the same spatiotemporal hierarchy as endogenously expressed proteins. Combining live- and fixed-cell STED super-resolution microscopy, we show that overexpression of BAK results in novel BAK structures, which are virtually absent in non-overexpressing apoptotic cells. We further demonstrate that in wild type cells, BAK is recruited to apoptotic pores before BAX. Both proteins together form unordered, mosaic rings on apoptotic mitochondria in immortalized cell culture models as well as in human primary cells. In BAX- or BAK- single-knockout cells, the remaining protein is able to form rings independently. The heterogeneous nature of these rings in both wild type as well as single-knockout cells corroborates the toroidal apoptotic pore model.


Assuntos
Apoptose , Mitocôndrias , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína X Associada a bcl-2 , Animais , Humanos , Camundongos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
4.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253420

RESUMO

Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster , Membranas Mitocondriais , Citoesqueleto , Membranas Associadas à Mitocôndria , Proteínas de Drosophila/genética
5.
iScience ; 27(1): 108700, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213623

RESUMO

Mitochondria are key organelles to provide ATP for synaptic transmission. This study aims to unravel the structural adaptation of mitochondria to an increase in presynaptic energy demand and upon the functional impairment of the auditory system. We use the anteroventral cochlear nucleus (AVCN) of wild-type and congenital deaf mice before and after hearing onset as a model system for presynaptic states of lower and higher energy demands. We combine focused ion beam scanning electron microscopy and electron tomography to investigate mitochondrial morphology. We found a larger volume of synaptic boutons and mitochondria after hearing onset with a higher crista membrane density. In deaf animals lacking otoferlin, we observed a shallow increase of mitochondrial volumes toward adulthood in endbulbs, while in wild-type animals mitochondria further enlarged. We propose that in the AVCN, presynaptic mitochondria undergo major structural changes likely to serve higher energy demands upon the onset of hearing and further maturation.

6.
Front Cell Dev Biol ; 11: 1178992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635868

RESUMO

In mammals, spatial orientation is synaptically-encoded by sensory hair cells of the vestibular labyrinth. Vestibular hair cells (VHCs) harbor synaptic ribbons at their presynaptic active zones (AZs), which play a critical role in molecular scaffolding and facilitate synaptic release and vesicular replenishment. With advancing age, the prevalence of vestibular deficits increases; yet, the underlying mechanisms are not well understood and the possible accompanying morphological changes in the VHC synapses have not yet been systematically examined. We investigated the effects of maturation and aging on the ultrastructure of the ribbon-type AZs in murine utricles using various electron microscopic techniques and combined them with confocal and super-resolution light microscopy as well as metabolic imaging up to 1 year of age. In older animals, we detected predominantly in type I VHCs the formation of floating ribbon clusters, mostly consisting of newly synthesized ribbon material. Our findings suggest that VHC ribbon-type AZs undergo dramatic structural alterations upon aging.

8.
Commun Biol ; 6(1): 674, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369761

RESUMO

STED microscopy is widely used to image subcellular structures with super-resolution. Here, we report that restoring STED images with deep learning can mitigate photobleaching and photodamage by reducing the pixel dwell time by one or two orders of magnitude. Our method allows for efficient and robust restoration of noisy 2D and 3D STED images with multiple targets and facilitates long-term imaging of mitochondrial dynamics.


Assuntos
Aprendizado Profundo , Microscopia de Fluorescência/métodos , Imageamento Tridimensional
9.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747618

RESUMO

STED microscopy is widely used to image subcellular structures with super-resolution. Here, we report that denoising STED images with deep learning can mitigate photobleaching and photodamage by reducing the pixel dwell time by one or two orders of magnitude. Our method allows for efficient and robust restoration of noisy 2D and 3D STED images with multiple targets and facilitates long-term imaging of mitochondrial dynamics.

10.
J Shoulder Elbow Surg ; 32(2): 383-391, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36206984

RESUMO

BACKGROUND: There are no generally accepted guidelines for polyethylene (PE) glenoid component cementation techniques. In particular, it is not known whether the backside of a PE glenoid should be fully or partially cemented-or not cemented at all. We hypothesized that cementing techniques would have an impact on cement mantle volume and integrity, as well as biomechanical stability, measured as micromotion under cyclic loading. METHODS: To address our hypothesis, 3 different cementation techniques using a single 2-peg PE glenoid design with polyurethane foam were compared regarding (1) the quality and quantity of the cement mantle and (2) biomechanical stability after cyclic loading in vitro. Eight identically cemented glenoids per group were used. Group A underwent cement application only into the peg holes, group B received additional complete cement mantle application on the backside of the glenoid, and group C received the same treatment as group B but with additional standardized drill holes in the surface of the glenoid bone for extra cement interdigitation. All glenoids underwent cyclic edge loading by 105 cycles according to ASTM F2028-14. Before and after loading, cement mantle evaluation was performed by XtremeCT and biomechanical strength and loosening were evaluated by measuring the relative motion of the implants. RESULTS: The cement mantle at the back of the implant was incomplete in group A as compared with groups B and C, in which the complete PE backside was covered with a homogeneous cement mantle. The cement mantle was thickest in group C, followed by group B (P = .006) and group A (P < .001). We did not detect any breakage of the cement mantle in any of the 3 groups after testing. Primary stability during cyclic loading was similar in all groups after the "running-in" phase (up to 4000 cycles). Gross loosening did not occur in any implant. CONCLUSIONS: Coverage of the PE glenoid with cement was reproducible in the fully cemented groups (ie, groups B and C) as compared with relevant cement defects in group A. The addition of cement to the back of the PE glenoid and additional drill holes in the glenoid surface did not improve primary stability in the tested setting.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Humanos , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/cirurgia , Polietileno , Cimentação/métodos , Artroplastia do Ombro/métodos , Tomografia Computadorizada por Raios X , Cimentos Ósseos , Desenho de Prótese , Falha de Prótese
11.
Proc Natl Acad Sci U S A ; 119(52): e2215799119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534799

RESUMO

Capturing mitochondria's intricate and dynamic structure poses a daunting challenge for optical nanoscopy. Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED) microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell nanoscopy of mitochondria has been largely restricted to two-dimensional (2D) single-color recordings of cancer cells. Here, by conjugation of cyclooctatetraene (COT) to a benzo-fused cyanine dye, we report a mitochondrial inner membrane (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability, and markedly reduced phototoxicity. PKMO enables super-resolution (SR) recordings of IM dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids. Photostability and reduced phototoxicity of PKMO open the door to live-cell three-dimensional (3D) STED nanoscopy of mitochondria for 3D analysis of the convoluted IM. PKMO is optically orthogonal with green and far-red markers, allowing multiplexed recordings of mitochondria using commercial STED microscopes. Using multi-color STED microscopy, we demonstrate that imaging with PKMO can capture interactions of mitochondria with different cellular components such as the endoplasmic reticulum (ER) or the cytoskeleton, Bcl-2-associated X protein (BAX)-induced apoptotic process, or crista phenotypes in genetically modified cells, all at sub-100 nm resolution. Thereby, this work offers a versatile tool for studying mitochondrial IM architecture and dynamics in a multiplexed manner.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Humanos , Animais , Células HeLa , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos
12.
Nat Methods ; 19(9): 1072-1075, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36050490

RESUMO

MINimal fluorescence photon FLUXes (MINFLUX) nanoscopy, providing photon-efficient fluorophore localizations, has brought about three-dimensional resolution at nanometer scales. However, by using an intrinsic on-off switching process for single fluorophore separation, initial MINFLUX implementations have been limited to two color channels. Here we show that MINFLUX can be effectively combined with sequentially multiplexed DNA-based labeling (DNA-PAINT), expanding MINFLUX nanoscopy to multiple molecular targets. Our method is exemplified with three-color recordings of mitochondria in human cells.


Assuntos
DNA , Corantes Fluorescentes , Humanos , Microscopia de Fluorescência/métodos , Mitocôndrias , Fótons
13.
EMBO Rep ; 23(11): e54746, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36156348

RESUMO

Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor-resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD -induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.


Assuntos
Cálcio , Melanoma , Humanos , Cálcio/metabolismo , Proteômica , Melanoma/genética , Melanoma/metabolismo , Oxirredução , Fenótipo , Linhagem Celular Tumoral
14.
Chemphyschem ; 23(19): e202200192, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35959919

RESUMO

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.


Assuntos
Escherichia coli , Microscopia , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes/química
15.
Sci Adv ; 8(35): eabo4946, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044574

RESUMO

Mitochondrial cristae membranes are the oxidative phosphorylation sites in cells. Crista junctions (CJs) form the highly curved neck regions of cristae and are thought to function as selective entry gates into the cristae space. Little is known about how CJs are generated and maintained. We show that the central coiled-coil (CC) domain of the mitochondrial contact site and cristae organizing system subunit Mic60 forms an elongated, bow tie-shaped tetrameric assembly. Mic19 promotes Mic60 tetramerization via a conserved interface between the Mic60 mitofilin and Mic19 CHCH (CC-helix-CC-helix) domains. Dimerization of mitofilin domains exposes a crescent-shaped membrane-binding site with convex curvature tailored to interact with the curved CJ neck. Our study suggests that the Mic60-Mic19 subcomplex traverses CJs as a molecular strut, thereby controlling CJ architecture and function.

17.
Nat Methods ; 19(5): 603-612, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577958

RESUMO

Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2-3 nm, and we demonstrate its capabilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria.


Assuntos
Lentes , Imagem Individual de Molécula , Animais , Artefatos , Mamíferos , Microscopia , Imagem Óptica
18.
Elife ; 102021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34969438

RESUMO

Human mitochondria express a genome that encodes thirteen core subunits of the oxidative phosphorylation system (OXPHOS). These proteins insert into the inner membrane co-translationally. Therefore, mitochondrial ribosomes engage with the OXA1L-insertase and membrane-associated proteins, which support membrane insertion of translation products and early assembly steps into OXPHOS complexes. To identify ribosome-associated biogenesis factors for the OXPHOS system, we purified ribosomes and associated proteins from mitochondria. We identified TMEM223 as a ribosome-associated protein involved in complex IV biogenesis. TMEM223 stimulates the translation of COX1 mRNA and is a constituent of early COX1 assembly intermediates. Moreover, we show that SMIM4 together with C12ORF73 interacts with newly synthesized cytochrome b to support initial steps of complex III biogenesis in complex with UQCC1 and UQCC2. Our analyses define the interactome of the human mitochondrial ribosome and reveal novel assembly factors for complex III and IV biogenesis that link early assembly stages to the translation machinery.


Assuntos
Proteínas de Membrana/metabolismo , Ribossomos Mitocondriais/metabolismo , Fosforilação Oxidativa , Proteínas Ribossômicas/genética , Citocromos b , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Biossíntese de Proteínas , RNA Mensageiro
19.
Cell Rep ; 37(8): 110000, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818548

RESUMO

In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load.


Assuntos
Replicação do DNA/fisiologia , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Empacotamento do DNA/fisiologia , Replicação do DNA/genética , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Fibroblastos , Humanos , Microscopia/métodos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação , Nucleoproteínas/metabolismo , Fatores de Transcrição/genética
20.
Nat Commun ; 12(1): 5715, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588454

RESUMO

Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fracionamento Celular , Núcleo Celular/metabolismo , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/isolamento & purificação , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Ligação Proteica/genética , Mapeamento de Interação de Proteínas/métodos , Precursores de Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA