Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Biosens Bioelectron ; 246: 115838, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38042052

RESUMO

Stem cell technology holds immense potential for revolutionizing medicine, particularly in regenerative treatment for heart disease. The unique capacity of stem cells to differentiate into diverse cell types offers promise in repairing damaged tissues and implanting organs. Ensuring the quality of differentiated cells, essential for specific functions, demands in-depth analysis. However, this process consumes time and incurs substantial costs while invasive methods may alter stem cell features during differentiation and deplete cell numbers. To address these challenges, we propose a non-invasive strategy, using cellular respiration, to assess the quality of differentiation-induced stem cells, notably cardiovascular stem cells. This evaluation employs an electronic nose (E-Nose) and neural pattern separation (NPS). Our goal is to assess differentiation-induced cardiac stem cells (DICs) quality through E-Nose data analysis and compare it with standard commercial human cells (SCHCs). Sensitivity and specificity were evaluated by interacting SCHCs and DICs with the E-Nose, achieving over 90% classification accuracy. Employing selective combinations optimized by NPS, E-Nose successfully classified all six cell types. Consequently, the relative similarity among DICs like cardiomyocytes, endothelial cells with SCHCs was established relied on comparing response data from the E-Nose sensor without resorting to complex evaluations.


Assuntos
Técnicas Biossensoriais , Nariz Eletrônico , Humanos , Células Endoteliais , Diferenciação Celular , Células-Tronco
4.
J Funct Biomater ; 14(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37888162

RESUMO

Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.

5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569446

RESUMO

This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.

6.
Cells ; 12(15)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566085

RESUMO

Endothelial progenitor cell (EPC)-based stem cell therapy is a promising therapeutic strategy for vascular diseases. However, continuous in vitro expansion for clinical studies induces the loss of EPC functionality due to aging. In this study, we investigated the effects of StemRegenin-1 (SR-1), an antagonist of aryl hydrocarbon receptor (AhR), on replicative senescence in EPCs. We found that SR-1 maintained the expression of EPC surface markers, including stem cell markers, such as CD34, c-Kit, and CXCR4. Moreover, SR-1 long-term-treated EPCs preserved their characteristics. Subsequently, we demonstrated that SR-1 showed that aging phenotypes were reduced through senescence-associated phenotypes, such as ß-galactosidase activity, SMP30, p21, p53, and senescence-associated secretory phenotype (SASP). SR-1 treatment also increased the proliferation, migration, and tube-forming capacity of senescent EPCs. SR-1 inhibited the AhR-mediated cytochrome P450 (CYP)1A1 expression, reactive-oxygen species (ROS) production, and DNA damage under oxidative stress conditions in EPCs. Furthermore, as a result of CYP1A1-induced ROS inhibition, it was found that accumulated intracellular ROS were decreased in senescent EPCs. Finally, an in vivo Matrigel plug assay demonstrated drastically enhanced blood vessel formation via SR-1-treated EPCs. In summary, our results suggest that SR-1 contributes to the protection of EPCs against cellular senescence.


Assuntos
Células Progenitoras Endoteliais , Espécies Reativas de Oxigênio/metabolismo , Células Progenitoras Endoteliais/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/metabolismo
7.
Adv Healthc Mater ; 12(26): e2300845, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449876

RESUMO

Diabetes and its complications affect the younger population and are associated with a high mortality rate; however, early diagnosis can contribute to the selection of appropriate treatment regimens that can reduce mortality. Although diabetes diagnosis via exhaled breath has great potential for early diagnosis, research on such diagnosis is restricted to disease detection, requiring in-depth examination to diagnose and classify diseases and their complications. This study demonstrates the use of an artificial neural processing-based bioelectronic nose to accurately diagnose diabetes and classify diabetic types (type I and II) and their complications, such as heart disease. Specifically, an M13 phage-based electronic nose (e-nose) is used to explore the features of subjects with diabetes at various levels of cellular and organismal organization (cells, liver organoids, and mice). Exhaled breath samples are collected during culturing and exposed to the phage-based e-nose. Compared with cells, liver organoids cultured under conditions mimicking a diabetic environment display properties that closely resemble the characteristics of diabetic mice. Using neural pattern separation, the M13 phage-based e-nose achieves a classification success rate of over 86% for four conditions in mice, namely, type 1 diabetes, type 2 diabetes, diabetic cardiomyopathy, and cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Animais , Camundongos , Diabetes Mellitus Experimental/diagnóstico , Testes Respiratórios , Expiração , Nariz Eletrônico
9.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055132

RESUMO

Anterior gradient protein 2 homolog (AGR2), an endoplasmic reticulum protein, is secreted in the tumor microenvironment. AGR2 is a member of the disulfide isomerase family, is highly expressed in multiple cancers, and promotes cancer metastasis. In this study, we found that etravirine, which is a non-nucleoside reverse transcriptase inhibitor, could induce AGR2 degradation via autophagy. Moreover, etravirine diminished proliferation, migration, and invasion in vitro. Moreover, in an orthotopic xenograft mouse model, the combination of etravirine and paclitaxel significantly suppressed cancer progression and metastasis. This drug may be a promising therapeutic agent for the treatment of ovarian cancer.


Assuntos
Mucoproteínas/metabolismo , Nitrilas/administração & dosagem , Proteínas Oncogênicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Pirimidinas/administração & dosagem , Inibidores da Transcriptase Reversa/administração & dosagem , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mucoproteínas/genética , Metástase Neoplásica , Nitrilas/farmacologia , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Proteólise , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Exp Mol Med ; 53(9): 1423-1436, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34584195

RESUMO

Stem cell-based therapies with clinical applications require millions of cells. Therefore, repeated subculture is essential for cellular expansion, which is often complicated by replicative senescence. Cellular senescence contributes to reduced stem cell regenerative potential as it inhibits stem cell proliferation and differentiation as well as the activation of the senescence-associated secretory phenotype (SASP). In this study, we employed MHY-1685, a novel mammalian target of rapamycin (mTOR) inhibitor, and examined its long-term priming effect on the activities of senile human cardiac stem cells (hCSCs) and the functional benefits of primed hCSCs after transplantation. In vitro experiments showed that the MHY-1685‒primed hCSCs exhibited higher viability in response to oxidative stress and an enhanced proliferation potential compared to that of the unprimed senile hCSCs. Interestingly, priming MHY-1685 enhanced the expression of stemness-related markers in senile hCSCs and provided the differentiation potential of hCSCs into vascular lineages. In vivo experiment with echocardiography showed that transplantation of MHY-1685‒primed hCSCs improved cardiac function than that of the unprimed senile hCSCs at 4 weeks post-MI. In addition, hearts transplanted with MHY-1685-primed hCSCs exhibited significantly lower cardiac fibrosis and higher capillary density than that of the unprimed senile hCSCs. In confocal fluorescence imaging, MHY-1685‒primed hCSCs survived for longer durations than that of the unprimed senile hCSCs and had a higher potential to differentiate into endothelial cells (ECs) within the infarcted hearts. These findings suggest that MHY-1685 can rejuvenate senile hCSCs by modulating autophagy and that as a senescence inhibitor, MHY-1685 can provide opportunities to improve hCSC-based myocardial regeneration.


Assuntos
Autofagia , Diferenciação Celular , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Fibrose , Humanos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transplante de Células-Tronco , Serina-Treonina Quinases TOR/metabolismo
11.
Biofabrication ; 13(4)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34433153

RESUMO

Intercellular interaction is the most crucial factor in promoting cell viability and functionality in an engineered tissue system. Of the various shapes available for cell-laden constructs, spheroidal multicellular microarchitectures (SMMs) have been introduced as building blocks and injectable cell carriers with substantial cell-cell and cell-extracellular matrix (ECM) interactions. Here, we developed a precise and expeditious SMM printing method that can create a tissue-specific microenvironment and thus be potentially useful for cell therapy. This printing strategy is designed to manufacture SMMs fabricated with optimal bioink blended with decellularized ECM and alginate to enhance the functional performance of the encapsulated cells. Experimental results showed that the proposed method allowed for size controllability and mass production of SMMs with high cell viability. Moreover, SMMs co-cultured with endothelial cells promoted lineage-specific maturation and increased functionality compared to monocultured SMMs. Overall, it was concluded that SMMs have the potential for use in cell therapy due to their high cell retention and proliferation rate compared to single-cell injection, particularly for efficient tissue regeneration after myocardial infarction. This study suggests that utilizing microextrusion-based 3D bioprinting technology to encapsulate cells in cell-niche-standardized SMMs can expand the range of possible applications.


Assuntos
Bioimpressão , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
12.
Korean J Physiol Pharmacol ; 25(5): 459-466, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448463

RESUMO

Cardiovascular disease (CVD) and its complications are the leading cause of morbidity and mortality in the world. Because of the side effects and incomplete recovery from current therapy, stem cell therapy emerges as a potential therapy for CVD treatment, and endothelial progenitor cell (EPC) is one of the key stem cells used for therapeutic applications. The effect of this therapy required the expansion of EPC function. To enhance the EPC activation, proliferation, and angiogenesis using dronedarone hydrochloride (DH) is the purpose of this study. DH received approval for atrial fibrillation treatment and its cardiovascular protective effects were already reported. In this study, DH significantly increased EPC proliferation, tube formation, migration, and maintained EPCs surface marker expression. In addition, DH treatment up-regulated the phosphorylation of AKT and reduced the reactive oxygen species production. In summary, the cell priming by DH considerably improved the functional activity of EPCs, and the use of which might be a novel strategy for CVD treatment.

13.
Exp Mol Med ; 52(4): 615-628, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32273566

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway efficiently regulates the energy state of cells and maintains tissue homeostasis. Dysregulation of the mTOR pathway has been implicated in several human diseases. Rapamycin is a specific inhibitor of mTOR and pharmacological inhibition of mTOR with rapamycin promote cardiac cell generation from the differentiation of mouse and human embryonic stem cells. These studies strongly implicate a role of sustained mTOR activity in the differentiating functions of embryonic stem cells; however, they do not directly address the required effect for sustained mTOR activity in human cardiac progenitor cells. In the present study, we evaluated the effect of mTOR inhibition by rapamycin on the cellular function of human cardiac progenitor cells and discovered that treatment with rapamycin markedly attenuated replicative cell senescence in human cardiac progenitor cells (hCPCs) and promoted their cellular functions. Furthermore, rapamycin not only inhibited mTOR signaling but also influenced signaling pathways, including STAT3 and PIM1, in hCPCs. Therefore, these data reveal a crucial function for rapamycin in senescent hCPCs and provide clinical strategies based on chronic mTOR activity.


Assuntos
Senescência Celular/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Sirolimo/farmacologia , Células-Tronco/metabolismo
14.
Tissue Eng Regen Med ; 17(3): 323-333, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227286

RESUMO

BACKGROUND: Despite promising advances in stem cell-based therapy, the treatment of ischemic cardiovascular diseases remains a big challenge due to both the insufficient in vivo viability of transplanted cells and poor angiogenic potential of stem cells. The goal of this study was to develop therapeutic human cardiac progenitor cells (hCPCs) for ischemic cardiovascular diseases with a novel M13 peptide carrier. METHOD: In this study, an engineered M13 peptide carrier was successfully generated using a QuikChange Kit. The cellular function of M13 peptide carrier-treated hCPCs was assessed using a tube formation assay and scratch wound healing assay. The in vivo engraftment and cell survival bioactivities of transplanted cells were demonstrated by immunohistochemistry after hCPC transplantation into a myocardial infarction animal model. RESULTS: The engineered M13RGD+SDKP peptide carrier, which expressed RGD peptide on PIII site and SDKP peptide on PVIII site, did not affect morphologic change and proliferation ability in hCPCs. In contrast, hCPCs treated with M13RGD+SDKP showed enhanced angiogenic capacity, including tube formation and migration capacity. Moreover, transplanted hCPCs with M13RGD+SDKP were engrafted into the ischemic region and promoted in vivo cell survival. CONCLUSION: Our present data provides a promising protocol for CPC-based cell therapy via short-term cell priming of hCPCs with engineered M13RGD+SDKP before cell transplantation for treatment of cardiovascular disease.


Assuntos
Indutores da Angiogênese/farmacologia , Infarto do Miocárdio/terapia , Peptídeos/metabolismo , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Animais , Bacteriófago M13/genética , Doenças Cardiovasculares , Sobrevivência Celular , Células Endoteliais , Engenharia Genética , Humanos , Masculino , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/transplante , Peptídeos/farmacologia , Cicatrização
15.
Mar Drugs ; 17(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277207

RESUMO

The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Glucana 1,4-alfa-Glucosidase/metabolismo , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Cicatrização/efeitos dos fármacos
16.
Biochem Biophys Res Commun ; 515(4): 600-606, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178140

RESUMO

Colorectal cancer is one of the leading causes of cancer-related deaths. Due to relapse after current therapy regimens, cancer stem cells (CSCs) are being studied to target this small tumor-initiating population. Anterior gradient 2 (AGR2), a disulfide isomerase protein, is a well-known pro-oncogenic/metastatic oncogene overexpressed in various tumor tissues, including colon cancer. We found that AGR2 was a novel stem cell marker that was regulated by the canonical Wnt/ß-catenin pathway in colon CSCs. AGR2 was highly co-expressed with surface stem cell markers in spheroidal culture. Silencing of AGR2 resulted in decreased sphere-forming ability and down-regulated expression of stem cell markers, whereas the opposite effects were seen with AGR2 overexpression. Moreover, patients with high ß-catenin and AGR2 expression showed lower overall survival than those with low expression. In conclusion, our study describes a novel role for AGR2 as a stem cell marker that is highly regulated by canonical Wnt/ß-catenin signaling in colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Mucoproteínas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Oncogênicas/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Inativação Gênica , Células HCT116 , Células HEK293 , Humanos , Metástase Neoplásica , Transdução de Sinais , Esferoides Celulares , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
17.
Biochem Biophys Res Commun ; 516(1): 149-156, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31202462

RESUMO

Anterior gradient protein 2 homolog (AGR2) belongs to the disulfide isomerase family of endoplasmic reticulum proteins. Itis overexpressed in several types of solid tumors, including tumors of the prostate, lung, and pancreas. However, the role of AGR2 in breast cancer and the regulatory mechanisms underlying AGR2 protein expressionare not fullyunderstood. We demonstrated that AGR2 levels are increased under hypoxic conditions and in breast cancer tumors. Mechanistically, Twist1 binds to, and activates the AGR2 promoter via an E-box sequence. Under hypoxic conditions, the increased expression of ARG2 is attenuated when Twist1 levels are reduced by shRNA. Conversely, Twist1 overexpression fully reverses decreased AGR2 levels upon HIF-1α knockdown. Notably, AGR2 is required for Twist1-induced proliferation, migration, and invasion of breast cancer cells. Collectively, these findings extend our understanding of AGR2 regulation in breast cancer and may contribute to development of Twist1-AGR2 targeting therapeutics for breast cancer.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Mucoproteínas/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Proteína 1 Relacionada a Twist/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas
18.
Oxid Med Cell Longev ; 2019: 6492029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223423

RESUMO

Cardiovascular diseases (CVDs) are a major cause of death worldwide. Due to the prevalence of many side effects and incomplete recovery from pharmacotherapies, stem cell therapy is being targeted for the treatment of CVDs. Among the different types of stem cells, endothelial progenitor cells (EPCs) have great potential. However, cellular replicative senescence decreases the proliferation, migration, and overall function of EPCs. Sirtuin 1 (SIRT1) has been mainly studied in the mammalian aging process. MHY2233 is a potent synthetic SIRT1 activator and a novel antiaging compound. We found that MHY2233 increased the expression of SIRT1, and its deacetylase activity thereby decreased expression of the cellular senescence biomarkers, p53, p16, and p21. In addition, MHY2233 decreased senescence-associated beta-galactosidase- (SA-ß-gal-) positive cells and senescence-associated secretory phenotypes (SASPs), such as the secretion of interleukin- (IL-) 6, IL-8, IL-1α, and IL-1ß. MHY2233 treatment protected senescent EPCs from oxidative stress by decreasing cellular reactive oxygen species (ROS) levels, thus enhancing cell survival and function. The angiogenesis, proliferation, and migration of senescent EPCs were enhanced by MHY2233 treatment. Thus, MHY2233 reduces replicative and oxidative stress-induced senescence in EPCs. Therefore, this novel antiaging compound MHY2233 might be considered a potent therapeutic agent for the treatment of age-associated CVDs.


Assuntos
Benzoxazóis/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Sirtuína 1/metabolismo , Senescência Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/citologia , Sangue Fetal/diagnóstico por imagem , Sangue Fetal/metabolismo , Humanos , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos
19.
Mar Drugs ; 17(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234277

RESUMO

Cardiac progenitor cells (CPCs) are resident stem cells present in a small portion of ischemic hearts and function in repairing the damaged heart tissue. Intense oxidative stress impairs cell metabolism thereby decreasing cell viability. Protecting CPCs from undergoing cellular apoptosis during oxidative stress is crucial in optimizing CPC-based therapy. Histochrome (sodium salt of echinochrome A-a common sea urchin pigment) is an antioxidant drug that has been clinically used as a pharmacologic agent for ischemia/reperfusion injury in Russia. However, the mechanistic effect of histochrome on CPCs has never been reported. We investigated the protective effect of histochrome pretreatment on human CPCs (hCPCs) against hydrogen peroxide (H2O2)-induced oxidative stress. Annexin V/7-aminoactinomycin D (7-AAD) assay revealed that histochrome-treated CPCs showed significant protective effects against H2O2-induced cell death. The anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and Bcl-xL were significantly upregulated, whereas the pro-apoptotic proteins BCL2-associated X (Bax), H2O2-induced cleaved caspase-3, and the DNA damage marker, phosphorylated histone (γH2A.X) foci, were significantly downregulated upon histochrome treatment of hCPCs in vitro. Further, prolonged incubation with histochrome alleviated the replicative cellular senescence of hCPCs. In conclusion, we report the protective effect of histochrome against oxidative stress and present the use of a potent and bio-safe cell priming agent as a potential therapeutic strategy in patient-derived hCPCs to treat heart disease.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Naftoquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/induzido quimicamente , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Federação Russa , Proteína X Associada a bcl-2/metabolismo
20.
Stem Cells Int ; 2018: 7453161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510587

RESUMO

Cross talks between the renin-angiotensin system (RAS), sympathetic nervous system, and vascular homeostasis are tightly coordinated in hypertension. Angiotensin II (Ang II), a key factor in RAS, when abnormally activated, affects the number and bioactivity of circulating human endothelial progenitor cells (hEPCs) in hypertensive patients. In this study, we investigated how the augmentation of Ang II regulates adrenergic receptor-mediated signaling and angiogenic bioactivities of hEPCs. Interestingly, the short-term treatment of hEPCs with Ang II drastically attenuated the expression of beta-2 adrenergic receptor (ADRB2), but did not alter the expression of beta-1 adrenergic receptor (ADRB1) and Ang II type 1 receptor (AT1R). EPC functional assay clearly demonstrated that the treatment with ADRB2 agonists significantly increased EPC bioactivities including cell proliferation, migration, and tube formation abilities. However, EPC bioactivities were decreased dramatically when treated with Ang II. Importantly, the attenuation of EPC bioactivities by Ang II was restored by treatment with an AT1R antagonist (telmisartan; TERT). We found that AT1R binds to ADRB2 in physiological conditions, but this binding is significantly decreased in the presence of Ang II. Furthermore, TERT, an Ang II-AT1R interaction blocker, restored the interaction between AT1R and ADRB2, suggesting that Ang II might induce the dysfunction of EPCs via downregulation of ADRB2, and an AT1R blocker could prevent Ang II-mediated ADRB2 depletion in EPCs. Taken together, our report provides novel insights into potential therapeutic approaches for hypertension-related cardiovascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA