Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mutagenesis ; 39(2): 69-77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301659

RESUMO

Chemical safety testing plays a crucial role in product and pharmacological development, as well as chemoprevention; however, in vitro genotoxicity safety tests do not always accurately predict the chemicals that will be in vivo carcinogens. If chemicals test positive in vitro for genotoxicity but negative in vivo, this can contribute to unnecessary testing in animals used to confirm erroneous in vitro positive results. Current in vitro tests typically evaluate only genotoxicity endpoints, which limits their potential to detect non-genotoxic carcinogens. The frequency of misleading in vitro positive results can be high, leading to a requirement for more informative in vitro tests. It is now recognized that multiple-endpoint genotoxicity testing may aid more accurate detection of carcinogens and non-carcinogens. The objective of this review was to evaluate the utility of our novel, multiple-endpoint in vitro test, which uses multiple cancer-relevant endpoints to predict carcinogenic potential. The tool assessed micronucleus frequency, p53 expression, p21 expression, mitochondrial respiration, cell cycle abnormalities and, uniquely, cell morphology changes in human lymphoblastoid cell lines, TK6 and MCL-5. The endpoints were used to observe cellular responses to 18 chemicals within the following categories: genotoxic carcinogens, non-genotoxic carcinogens, toxic non-carcinogens, and misleading in vitro positive and negative agents. The number of endpoints significantly altered for each chemical was considered, alongside the holistic Integrated Signature of Carcinogenicity score, derived from the sum of fold changes for all endpoints. Following the calculation of an overall score from these measures, carcinogens exhibited greater potency than non-carcinogens. Genotoxic carcinogens were generally more potent than non-genotoxic carcinogens. This novel approach therefore demonstrated potential for correctly predicting whether chemicals with unknown mechanism may be considered carcinogens. Overall, while further validation is recommended, the test demonstrates potential for the identification of carcinogenic compounds. Adoption of the approach could enable reduced animal use in carcinogenicity testing.


Assuntos
Carcinogênese , Carcinógenos , Animais , Humanos , Carcinógenos/toxicidade , Testes de Carcinogenicidade/métodos , Testes de Mutagenicidade/métodos , Dano ao DNA , Técnicas In Vitro
2.
Mutagenesis ; 39(1): 13-23, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37555614

RESUMO

Cadmium chloride (CdCl2) is a known genotoxic carcinogen, with a mechanism of action thought to partly involve the generation of reactive oxygen species (ROS). We applied here a multi-endpoint approach in vitro to explore the impact of CdCl2 on both the genome and on wider cell biology pathways relevant to cancer. Multi-endpoint approaches are believed to offer greater promise in terms of understanding the holistic effects of carcinogens in vitro. This richer understanding may help better classification of carcinogens as well as allowing detailed mechanisms of action to be identified. We found that CdCl2 caused DNA damage [micronuclei (MN)] in both TK6 and NH32 cells in a dose-dependent manner after 4 h exposure (plus 23 h recovery), with lowest observable effect levels (LOELs) for MN induction of 1 µM (TK6) and 1.6 µM (NH32). This DNA damage induction in TK6 cells was ROS dependent as pretreatment with the antioxidant N-Acetyl Cysteine (1 mM), abrogated this effect. However, 2',7'-dichlorofluorescin diacetate was not capable of detecting the ROS induced by CdCl2. The use of NH32 cells allowed an investigation of the role of p53 as they are a p53 null cell line derived from TK6. NH32 showed a 10-fold increase in MN in untreated cells and a similar dose-dependent effect after CdCl2 treatment. In TK6 cells, CdCl2 also caused activation of p53 (accumulation of total and phosphorylated p53), imposition of cell cycle checkpoints (G2/M) and intriguingly the production of smaller and more eccentric (elongated) cells. Overall, this multi-endpoint study suggests a carcinogenic mechanism of CdCl2 involving ROS generation, oxidative DNA damage and p53 activation, leading to cell cycle abnormalities and impacts of cell size and shape. This study shows how the integration of multiple cell biology endpoints studied in parallel in vitro can help mechanistic understanding of how carcinogens disrupt normal cell biology.


Assuntos
Cloreto de Cádmio , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Cádmio/toxicidade , Cloreto de Cádmio/metabolismo , Dano ao DNA , Ciclo Celular , Carcinógenos/toxicidade
3.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 179-187, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37329528

RESUMO

The expression of six transmembrane epithelial antigen of the prostate (STEAP2) is increased in prostate cancer when compared to normal tissue, suggesting a role for STEAP2 in disease progression. This study aimed to determine whether targeting STEAP2 with an anti-STEAP2 polyclonal antibody (pAb) or CRISPR/Cas9 knockout influenced aggressive prostate cancer traits. Gene expression analysis of the STEAP gene family was performed in a panel of prostate cancer cell lines; C4-2B, DU145, LNCaP and PC3. The highest increases in STEAP2 gene expression were observed in C4-2B and LNCaP cells (p<0.001 and p<0.0001 respectively) when compared to normal prostate epithelial PNT2 cells. These cell lines were treated with an anti-STEAP2 pAb and their viability assessed. CRISPR/Cas9 technology was used to knockout STEAP2 from C4-2B and LNCaP cells and viability, proliferation, migration and invasion assessed. When exposed to an anti-STEAP2 pAb, cell viability significantly decreased (p<0.05). When STEAP2 was knocked out, cell viability and proliferation was significantly decreased when compared to wild-type cells (p<0.001). The migratory and invasive potential of knockout cells were also decreased. These data suggest that STEAP2 has a functional role in driving aggressive prostate cancer traits and could provide a novel therapeutic target for the treatment of prostate cancer.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
4.
Toxicol In Vitro ; 85: 105473, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36108805

RESUMO

To reduce, replace, and refine in vivo testing, there is increasing emphasis on the development of more physiologically relevant in vitro test systems to improve the reliability of non-animal-based methods for hazard assessment. When developing new approach methodologies, it is important to standardize the protocols and demonstrate the methods can be reproduced by multiple laboratories. The aim of this study was to assess the transferability and reproducibility of two advanced in vitro liver models, the Primary Human multicellular microtissue liver model (PHH) and the 3D HepG2 Spheroid Model, for nanomaterial (NM) and chemical hazard assessment purposes. The PHH model inter-laboratory trial showed strong consistency across the testing sites. All laboratories evaluated cytokine release and cytotoxicity following exposure to titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles. No significant difference was observed in cytotoxicity or IL-8 release for the test materials. The data were reproducible with all three laboratories with control readouts within a similar range. The PHH model ZnO induced the greatest cytotoxicity response at 50.0 µg/mL and a dose-dependent increase in IL-8 release. For the 3D HepG2 spheroid model, all test sites were able to construct the model and demonstrated good concordance in IL-8 cytokine release and genotoxicity data. This trial demonstrates the successful transfer of new approach methodologies across multiple laboratories, with good reproducibility for several hazard endpoints.


Assuntos
Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Reprodutibilidade dos Testes , Interleucina-8 , Fígado , Linhagem Celular , Esferoides Celulares
5.
Toxicol In Vitro ; 83: 105415, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752104

RESUMO

Due to the expansive application of TiO2 and its variance in physico-chemical characteristics, the toxicological profile of TiO2, in all its various forms, requires evaluation. This study aimed to assess the hazard of five TiO2 particle-types in relation to their cytotoxic profile correlated to their cellular interaction, specifically in human lymphoblast (TK6) and type-II alveolar epithelial (A549) cells. Treatment with the test materials was undertaken at a concentration range of 1-100 µg/cm2 over 24 and 72 h exposure. TiO2 interaction with both cell types was visualised by transmission electron microscopy, supported by energy-dispersive X-ray. None of the TiO2 materials tested promoted cytotoxicity in either cell type over the concentration and time range studied. All materials were observed to interact with the A549 cells and were further noted to be internalised following 24 h exposure. In contrast, only the pigmentary rutile was internalised by TK6 lymphoblasts after 24 h exposure. Where uptake was observed there was no evidence, as determined by 2D microscopy techniques, of particle localisation within the nucleus of either cell type. This study indicates that industrially relevant TiO2 particles demonstrate cell interactions that are cell-type dependent and do not induce cytotoxicity at the applied dose range.


Assuntos
Nanopartículas Metálicas , Comunicação Celular , Linhagem Celular , Humanos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade
6.
Nanotoxicology ; 16(1): 52-72, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35085458

RESUMO

Human ENP exposure is inevitable and the novel, size-dependent physicochemical properties that enable ENPs to be beneficial in innovative technologies are concomitantly causing heightened public concerns as to their potential adverse effects upon human health. This study aims to deduce the mechanisms associated with potential ENP mediated (geno)toxicity and impact upon telomere integrity, if any, of varying concentrations of both ∼16 nm (4.34 × 10-3 to 17.36 × 10-3 mg/mL) Gold (Au) and ∼14 nm (0.85 × 10-5 to 3.32 × 10-5 mg/mL) Silver (Ag) ENPs upon two commonly used lung epithelial cell lines, 16HBE14o- and A549. Following cytotoxicity analysis (via Trypan Blue and Lactate Dehydrogenase assay), two sub-lethal concentrations were selected for genotoxicity analysis using the cytokinesis-blocked micronucleus assay. Whilst both ENP types induced significant oxidative stress, Ag ENPs (1.66 × 10-5 mg/mL) did not display a significant genotoxic response in either epithelial cell lines, but Au ENPs (8.68 × 10-3 mg/mL) showed a highly significant 2.63-fold and 2.4-fold increase in micronucleus frequency in A549 and 16HBE14o- cells respectively. It is hypothesized that the DNA damage induced by acute 24-h Au ENP exposure resulted in a cell cycle stall indicated by the increased mononuclear cell fraction (>6.0-fold) and cytostasis level. Albeit insignificant, a small reduction in telomere length was observed following acute exposure to both ENPs which could indicate the potential for ENP mediated telomere attrition. Finally, from the data shown, both in vitro lung cell cultures (16HBE14o- and A549) are equally as suitable and reliable for the in vitro ENP hazard identification approach adopted in this study.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Dano ao DNA , Células Epiteliais , Ouro/química , Humanos , Pulmão/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Prata/química
7.
J Nanobiotechnology ; 19(1): 193, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183029

RESUMO

BACKGROUND: With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO2, ZnO, Ag, BaSO4 and CeO2) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure. RESULTS: Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO2. Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2-5.0 µg/mL of ZnO ENMs were found to elicit significant (p ≤ 0.05) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant (p ≥ 0.05) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively. CONCLUSION: In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fígado/patologia , Nanoestruturas/administração & dosagem , Nanoestruturas/toxicidade , Albuminas , Proliferação de Células , Citocinas/metabolismo , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Testes de Mutagenicidade , Tamanho da Partícula , Ureia
9.
Small ; 17(15): e2006298, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480476

RESUMO

Nanomaterials are defined as materials with at least one dimension of 100 nm or less. Their small size confers unique properties that may alter the toxicity profile when compared to larger forms of the same material, requiring additional considerations for safety assessment. There has been a rise in the development of nanomaterials for many applications, and although traditional approaches for toxicity testing may address some of the new toxicity concerns, many may not be directly applicable to nanomaterials and new tools or approaches may need to be developed. Since nanomaterials can exist in many different forms, each of which may cause different adverse biological effects, reliance on traditional in vivo models for safety assessment will simply not be feasible or sustainable, given the volume of materials that may need to be tested. It is essential to consider and develop new in vitro methods that can be applied for hazard identification and risk assessment. Many challenges are associated with using alternative approaches to ensure they are as robust and reliable as traditional in vivo approaches, but by overcoming these issues and adopting new testing strategies there are opportunities to improve safety assessments and reduce the reliance on animal-based toxicity testing strategies.


Assuntos
Nanoestruturas , Testes de Toxicidade , Animais , Nanoestruturas/toxicidade , Medição de Risco
10.
Small ; 17(15): e2006055, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33448117

RESUMO

Whilst the liver possesses the ability to repair and restore sections of damaged tissue following acute injury, prolonged exposure to engineered nanomaterials (ENM) may induce repetitive injury leading to chronic liver disease. Screening ENM cytotoxicity using 3D liver models has recently been performed, but a significant challenge has been the application of such in vitro models for evaluating ENM associated genotoxicity; a vital component of regulatory human health risk assessment. This review considers the benefits, limitations, and adaptations of specific in vitro approaches to assess DNA damage in the liver, whilst identifying critical advancements required to support a multitude of biochemical endpoints, focusing on nano(geno)toxicology (e.g., secondary genotoxicity, DNA damage, and repair following prolonged or repeated exposures).


Assuntos
Nanoestruturas , Dano ao DNA , Humanos , Fígado , Nanoestruturas/toxicidade , Medição de Risco
11.
J Nanobiotechnology ; 19(1): 24, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468168

RESUMO

BACKGROUND: Toxicological evaluation of engineered nanomaterials (ENMs) is essential for occupational health and safety, particularly where bulk manufactured ENMs such as few-layer graphene (FLG) are concerned. Additionally, there is a necessity to develop advanced in vitro models when testing ENMs to provide a physiologically relevant alternative to invasive animal experimentation. The aim of this study was to determine the genotoxicity of non-functionalised (neutral), amine- and carboxyl-functionalised FLG upon both human-transformed type-I (TT1) alveolar epithelial cell monocultures, as well as co-cultures of TT1 and differentiated THP-1 monocytes (d.THP-1 (macrophages)). RESULTS: In monocultures, TT1 and d.THP-1 macrophages showed a statistically significant (p < 0.05) cytotoxic response with each ENM following 24-h exposures. Monoculture genotoxicity measured by the in vitro cytokinesis blocked micronucleus (CBMN) assay revealed significant (p < 0.05) micronuclei induction at 8 µg/ml for amine- and carboxyl-FLG. Transmission electron microscopy (TEM) revealed ENMs were internalised by TT1 cells within membrane-bound vesicles. In the co-cultures, ENMs induced genotoxicity in the absence of cytotoxic effects. Co-cultures pre-exposed to 1.5 mM N-acetylcysteine (NAC), showed baseline levels of micronuclei induction, indicating that the genotoxicity observed was driven by oxidative stress. CONCLUSIONS: Therefore, FLG genotoxicity when examined in monocultures, results in primary-indirect DNA damage; whereas co-cultured cells reveal secondary mechanisms of DNA damage.


Assuntos
Dano ao DNA/efeitos dos fármacos , Grafite/toxicidade , Nanoestruturas/química , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Proteínas Filagrinas , Humanos , Macrófagos/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Estresse Oxidativo/efeitos dos fármacos , Células THP-1
12.
Arch Toxicol ; 95(1): 321-336, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910239

RESUMO

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/toxicidade , Determinação de Ponto Final , Projetos de Pesquisa , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Forma Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Fosforilação , Medição de Risco , Proteína Supressora de Tumor p53/metabolismo
13.
Small ; 17(15): e2002551, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32734718

RESUMO

Few-layer graphene (FLG) has garnered much interest owing to applications in hydrogen storage and reinforced nanocomposites. Consequently, these engineered nanomaterials (ENMs) are in high demand, increasing occupational exposure. This investigation seeks to assess the inhalation hazard of industrially relevant FLG engineered with: (i) no surface functional groups (neutral), (ii) amine, and (iii) carboxyl group functionalization. A monoculture of human lung epithelial (16HBE14o- ) cells is exposed to each material for 24-h, followed by cytotoxicity and genotoxicity evaluation using relative population doubling (RPD) and the cytokinesis-blocked micronucleus (CBMN) assay, respectively. Neutral-FLG induces the greatest (two-fold) significant increase (p < 0.05) in micronuclei, whereas carboxyl-FLG does not induce significant (p < 0.05) genotoxicity. These findings correlate to significant (p < 0.05) concentration-dependent increases in interleukin (IL)-8, depletion of intracellular glutathione (rGSH) and a depletion in mitochondrial ATP production. Uptake of FLG is evaluated by transmission electron microscopy, whereby FLG particles are observed within membrane-bound vesicles in the form of large agglomerates (>1 µm diameter). The findings of the present study have demonstrated the capability of neutral-FLG and amine-FLG to induce genotoxicity in 16HBE14o- cells through primary indirect mechanisms, suggesting a possible role for carboxyl groups in scavenging radicals produced via oxidative stress.


Assuntos
Grafite , Nanocompostos , Dano ao DNA , Células Epiteliais , Proteínas Filagrinas , Grafite/toxicidade , Humanos , Pulmão
14.
Mutagenesis ; 35(6): 445-452, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33219664

RESUMO

In vitro genotoxicity studies are a quick and high throughput approach to assess the genotoxic potential of chemicals; however, the reliability of these tests and their relevance to in vivo effects depends on the choice of representative cell line and optimisation of assay conditions. For chemicals like urethane that require specific metabolic activation to cause genotoxicity, it is important that in vitro tests are conducted using cell lines exhibiting the activity and induction of CYP450 enzymes, including CYP2E1 enzyme that is important in the metabolism of urethane, at a concentration representing actual or perceived chemical exposure. We compared 2D MCL-5 cells and HepG2 cells with 3D HepG2 hanging drop spheroids to determine the genotoxicity of urethane using the micronucleus assay. Our 2D studies with MCL-5 did not show any statistically significant genotoxicity [99% relative population doubling (RPD)] compared to controls for concentrations and time point tested in vitro. HepG2 cells grown as 2D indicated that exposure to urethane of up to 30 mM for 23 h did not cause any genotoxic effect (102% RPD) but, at higher concentrations, genotoxicity was produced with only 89-85% RPD. Furthermore, an exposure of 20-50 mM for 23 h using 3D hanging drop spheroid assays revealed a higher MN frequency, thus exhibiting in vitro genotoxicity of urethane in metabolically active cell models. In comparison with previous studies, this study indicated that urethane genotoxicity is dose, sensitivity of cell model (2D vs. 3D) and exposure dependent.


Assuntos
Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Uretana/toxicidade , Biomarcadores , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Esferoides Celulares
15.
Mutagenesis ; 35(4): 319-330, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780103

RESUMO

Following advancements in the field of genotoxicology, it has become widely accepted that 3D models are not only more physiologically relevant but also have the capacity to elucidate more complex biological processes that standard 2D monocultures are unable to. Whilst 3D liver models have been developed to evaluate the short-term genotoxicity of chemicals, the aim of this study was to develop a 3D model that could be used with the regulatory accepted in vitro micronucleus (MN) following low-dose, longer-term (5 days) exposure to engineered nanomaterials (ENMs). A comparison study was carried out between advanced models generated from two commonly used liver cell lines, namely HepaRG and HepG2, in spheroid format. While both spheroid systems displayed good liver functionality and viability over 14 days, the HepaRG spheroids lacked the capacity to actively proliferate and, therefore, were considered unsuitable for use with the MN assay. This study further demonstrated the efficacy of the in vitro 3D HepG2 model to be used for short-term (24 h) exposures to genotoxic chemicals, aflatoxin B1 (AFB1) and methyl-methanesulfonate (MMS). The 3D HepG2 liver spheroids were shown to be more sensitive to DNA damage induced by AFB1 and MMS when compared to the HepG2 2D monoculture. This 3D model was further developed to allow for longer-term (5 day) ENM exposure. Four days after seeding, HepG2 spheroids were exposed to Zinc Oxide ENM (0-2 µg/ml) for 5 days and assessed using both the cytokinesis-block MN (CBMN) version of the MN assay and the mononuclear MN assay. Following a 5-day exposure, differences in MN frequency were observed between the CBMN and mononuclear MN assay, demonstrating that DNA damage induced within the first few cell cycles is distributed across the mononucleated cell population. Together, this study demonstrates the necessity to adapt the MN assay accordingly, to allow for the accurate assessment of genotoxicity following longer-term, low-dose ENM exposure.


Assuntos
Técnicas de Cultura de Células/métodos , Fígado/efeitos dos fármacos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Esferoides Celulares , Aflatoxina B1/toxicidade , Linhagem Celular , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Metanossulfonato de Metila/toxicidade , Modelos Biológicos
16.
Small ; 16(36): e2002002, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32755066

RESUMO

To elucidate the impact of human exposure to engineered nanomaterials, advanced in vitro models are a valid non-animal alternative. Despite significant gains over the last decade, implementation of these approaches remains limited. This work discusses the current state-of-the-art and how future developments can lead to advanced in vitro models better supporting nano-hazard assessment.


Assuntos
Exposição Ambiental , Nanoestruturas , Comportamento de Redução do Risco , Exposição Ambiental/prevenção & controle , Humanos , Modelos Biológicos , Nanoestruturas/toxicidade , Medição de Risco
17.
Toxicol In Vitro ; 67: 104905, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32497684

RESUMO

Genotoxicity testing methods in vitro provide a means to predict the DNA damaging effects of chemicals on human cells. This is hindered in the case of hydrophobic test compounds, however, which will partition to in vitro components such as plastic-ware and medium proteins, in preference to the aqueous phase of the exposure medium. This affects the freely available test chemical concentration, and as this freely dissolved aqueous concentration is that bioavailable to cells, it is important to define and maintain this exposure. Passive dosing promises to have an advantage over traditional 'solvent spiking' exposure methods and involves the establishment and maintenance of known chemical concentrations in the in vitro medium, and therefore aqueous phase. Passive dosing was applied in a novel format to expose the MCL-5 human lymphoblastoid cell line to the pro-carcinogen, benzo[a]pyrene (B[a]P) and was compared to solvent (dimethyl sulphoxide) spiked B[a]P exposures over 48 h. Passive dosing induced greater changes, at lower concentrations, to micronucleus frequency, p21 mRNA expression, cell cycle abnormalities, and cell and nuclear morphology. This was attributed to a maintained, definable, free chemical concentration using passive dosing and the presence or absence of solvent, and highlights the influence of exposure choice on genotoxic outcomes.


Assuntos
Carcinógenos/administração & dosagem , Dimetil Sulfóxido/administração & dosagem , Solventes/administração & dosagem , Benzo(a)pireno/administração & dosagem , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Dimetil Sulfóxido/toxicidade , Humanos , Testes para Micronúcleos , Solventes/toxicidade
18.
J Vis Exp ; (160)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32568251

RESUMO

Due to the rapid development and implementation of a diverse array of engineered nanomaterials (ENM), exposure to ENM is inevitable and the development of robust, predictive in vitro test systems is essential. Hepatic toxicology is key when considering ENM exposure, as the liver serves a vital role in metabolic homeostasis and detoxification as well as being a major site of ENM accumulation post exposure. Based upon this and the accepted understanding that 2D hepatocyte models do not accurately mimic the complexities of intricate multi-cellular interactions and metabolic activity observed in vivo, there is a greater focus on the development of physiologically relevant 3D liver models tailored for ENM hazard assessment purposes in vitro. In line with the principles of the 3Rs to replace, reduce and refine animal experimentation, a 3D HepG2 cell-line based liver model has been developed, which is a user friendly, cost effective system that can support both extended and repeated ENM exposure regimes (≤14 days). These spheroid models (≥500 µm in diameter) retain their proliferative capacity (i.e., dividing cell models) allowing them to be coupled with the 'gold standard' micronucleus assay to effectively assess genotoxicity in vitro. Their ability to report on a range of toxicological endpoints (e.g., liver function, (pro-)inflammatory response, cytotoxicity and genotoxicity) has been characterized using several ENMs across both acute (24 h) and long-term (120 h) exposure regimes. This 3D in vitro hepatic model has the capacity to be utilized for evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.


Assuntos
Imageamento Tridimensional/métodos , Fígado/fisiopatologia , Testes de Mutagenicidade/métodos , Nanoestruturas/química , Humanos
19.
Chem Res Toxicol ; 33(5): 1061-1073, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32307980

RESUMO

Human exposure to engineered nanomaterials (ENMs) is inevitable due to the plethora of applications for which they are being manufactured and integrated within. ENMs demonstrate plentiful advantages in terms of industrial approaches as well as from a consumer perspective. However, despite such positives, doubts remain over the human health implications of ENM exposure. In light of the increased research focus upon the potential effects of ENM exposure to human health in recent decades, questions still remain regarding the safety of these highly advanced, precision-tuned physical entities. The risk of short-term, high-dose exposure to humans is considered relatively low, although this has formed the direction of the hazard-assessment community since the turn of the 21st century. However, the possibility of humans being exposed repeatedly over a long period of time to a low-dose of ENMs of varying physicochemical characteristics is of significant concern, and thus, industry, government, academic, and consumer agencies are only now beginning to consider this. Notably, when considering the human health implications of such low-dose, long-term, repeated exposure scenarios, the impact of ENMs upon the human immune system is of primary importance. However, there remains a real need to understand the impact of ENMs upon the human immune system, especially the innate immune system, at all stages of life, given exposure to nanosized particles begins before birth, that is, of the fetus. Therefore, the purpose of this perspective is to summarize what is currently known regarding ENM exposure of different components of the innate immune system and identify knowledge gaps that should be addressed if we are to fully deduce the impact of ENM exposure on innate immune function.


Assuntos
Imunidade Inata/efeitos dos fármacos , Nanoestruturas/efeitos adversos , Humanos
20.
Sci Rep ; 9(1): 5168, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914682

RESUMO

The Phosphatidylinositol glycan class A (PIG-A) gene mutation assay phenotypically measures erythrocyte mutations, assessed here for their correlation to neoplastic progression in the gastro-oesophageal reflux disease (GORD)-Barrett's metaplasia (BM)-oesophageal adenocarcinoma (OAC) model. Endoscopy patients underwent venipuncture and erythrocytes fluorescently stained for glycosyl phosphatidylinositol (GPI)-anchored proteins; CD55 and CD59. Using flow cytometry, GPI-anchor negative erythrocytes (mutants) were scored and compared amongst groups. The study enlisted 200 patients and 137 healthy volunteers. OAC patients had a three-fold increase in erythrocyte mutant frequency (EMF) compared to GORD patients (p < 0.001) and healthy volunteers (p < 0.001). In OAC patients, higher EMF was associated with worsening tumour staging (p = 0.014), nodal involvement (p = 0.019) and metastatic disease (p = 0.008). Chemotherapy patients demonstrated EMF's over 19-times higher than GORD patients. Patients were further classified into groups containing those with non-neoplastic disease and those with high-grade dysplasia/cancer with 72.1% of cases correctly classified by high EMF. Within the non-neoplastic group, aspirin users had lower EMF (p = 0.001) and there was a positive correlation between body mass index (p = 0.03) and age (p < 0.001) and EMF. Smokers had EMF's over double that of non-smokers (p = 0.011). Results suggest this test could help detect OAC and may be a useful predictor of disease progression.


Assuntos
Adenocarcinoma/sangue , Adenocarcinoma/genética , Bioensaio , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/genética , Mutação/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eritrócitos/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Humanos , Estilo de Vida , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Taxa de Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Fosfatidilinositóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA