Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20030, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414667

RESUMO

Plant variety protection is essential for breeders' rights granted by the International Union for the Protection of New Varieties of Plants. Distinctness, uniformity, and stability (DUS) are necessary for new variety registration; to this end, currently, morphological traits are examined, which is time-consuming and laborious. Molecular markers are more effective, accurate, and stable descriptors of DUS. Advancements in next-generation sequencing technology have facilitated genome-wide identification of single nucleotide polymorphisms. Here, we developed a core set of single nucleotide polymorphism markers to identify cabbage varieties and traits of test guidance through clustering using the Fluidigm assay, a high-throughput genotyping system. Core sets of 87, 24, and 10 markers are selected based on a genome-wide association-based approach. All core markers could identify 94 cabbage varieties and determine 17 DUS traits. A genotypes database was validated using the Fluidigm platform for variety identification, population structure analysis, cabbage breeding, and DUS testing for plant cultivar protection.


Assuntos
Brassica , Brassica/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genótipo , Plantas/genética
2.
Hortic Res ; 9: uhac119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928401

RESUMO

Lettuce is one of the economically important leaf vegetables and is cultivated mainly in temperate climate areas. Cultivar identification based on the distinctness, uniformity, and stability (DUS) test is a prerequisite for new cultivar registration. However, DUS testing based on morphological features is time-consuming, labor-intensive, and costly, and can also be influenced by environmental factors. Thus, molecular markers have also been used for the identification of genetic diversity as an effective, accurate, and stable method. Currently, genome-wide single nucleotide polymorphisms (SNPs) using next-generation sequencing technology are commonly applied in genetic research on diverse plant species. This study aimed to establish an effective and high-throughput cultivar identification system for lettuce using core sets of SNP markers developed by genotyping by sequencing (GBS). GBS identified 17 877 high-quality SNPs for 90 commercial lettuce cultivars. Genetic differentiation analyses based on the selected SNPs classified the lettuce cultivars into three main groups. Core sets of 192, 96, 48, and 24 markers were further selected and validated using the Fluidigm platform. Phylogenetic analyses based on all core sets of SNPs successfully discriminated individual cultivars that have been currently recognized. These core sets of SNP markers will support the construction of a DNA database of lettuce that can be useful for cultivar identification and purity testing, as well as DUS testing in the plant variety protection system. Additionally, this work will facilitate genetic research to improve breeding in lettuce.

3.
Food Sci Biotechnol ; 31(4): 423-431, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35464241

RESUMO

Wheat (Triticum aestivum) has diverse uses in the food industry, and different cultivars have unique properties; therefore, it is important to select the optimal cultivar for the intended end use. Here, to establish an identification system for Korean wheat cultivars, we obtained the complete plastome sequences of seven major Korean cultivars. Additionally, the open access database CerealsDB was queried to discover single-copy genomic single-nucleotide polymorphisms (SNPs) in the hexaploid wheat genome. Ten SNPs were developed into allele-specific PCR (ASP) markers, and eight of the SNPs used for ASP markers were converted into TaqMan high-throughput genotyping markers. Phylogenetic analysis using SNP genotypes revealed the genetic diversity and relationships among 137 wheat lines from around the world, including 35 Korean cultivars. This research thus presents a high-throughput authentication system for Korean wheat cultivars that may promote food industry uses of Korean wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01043-w.

4.
Theor Appl Genet ; 135(6): 1923-1937, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35357525

RESUMO

KEY MESSAGE: Unstable Restorer-of-fertility (Rfu), conferring unstable fertility restoration in the pepper CGMS system, was delimited to a genomic region near Rf and is syntenic to the PPR-like gene-rich region in tomato. The use of cytoplasmic-genic male sterility (CGMS) systems greatly increases the efficiency of hybrid seed production. Although marker development and candidate gene isolation have been performed for the Restorer-of-fertility (Rf) gene in pepper (Capsicum annuum L.), the broad use of CGMS systems has been hampered by the instability of fertility restoration among pepper accessions, especially sweet peppers, due to the widespread presence of the Unstable Restorer-of-fertility (Rfu) locus. Therefore, to investigate the genetic factors controlling unstable fertility restoration in sweet peppers, we developed a segregation population (BC4F5) from crosses using a male-sterile line and an Rfu-containing line. Segregation did not significantly deviate from a 3:1 ratio for unstable fertility restoration to sterility, indicating single dominant locus control for unstable fertility restoration in this population. Genetic mapping delimited the Rfu locus to a 398 kb genomic region on chromosome 6, which is close to but different from the previously identified Rf-containing region. The Rfu-containing region harbors a pentatricopeptide repeat (PPR) gene, along with 10 other candidate genes. In addition, this region is syntenic to the genomic region containing the largest number of Rf-like PPR genes in tomato. Therefore, the dynamic evolution of PPR genes might be responsible for both the restoration and instability of fertility in pepper. During genetic mapping, we developed various molecular markers, including one that co-segregated with Rfu. These markers showed higher accuracy for genotyping than previously developed markers, pointing to their possible use in marker-assisted breeding of sweet peppers.


Assuntos
Capsicum , Capsicum/genética , Fertilidade/genética , Genes de Plantas , Genômica , Melhoramento Vegetal , Infertilidade das Plantas/genética
5.
Plants (Basel) ; 10(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669519

RESUMO

Genetic diversity analysis and cultivar identification were performed using a core set of single nucleotide polymorphisms (SNPs) in cucumber (Cucumis sativus L.). For the genetic diversity study, 280 cucumber accessions collected from four continents (Asia, Europe, America, and Africa) by the National Agrobiodiversity Center of the Rural Development Administration in South Korea and 20 Korean commercial F1 hybrids were genotyped using 151 Fluidigm SNP assay sets. The heterozygosity of the SNP loci per accession ranged from 4.76 to 82.76%, with an average of 32.1%. Population genetics analysis was performed using population structure analysis and hierarchical clustering (HC), which indicated that these accessions were classified mainly into four subpopulations or clusters according to their geographical origins. The subpopulations for Asian and European accessions were clearly distinguished from each other (FST value = 0.47), while the subpopulations for Korean F1 hybrids and Asian accessions were closely related (FST = 0.34). The highest differentiation was observed between American and European accessions (FST = 0.41). Nei's genetic distance among the 280 accessions was 0.414 on average. In addition, 95 commercial F1 hybrids of three cultivar groups (Baekdadagi-, Gasi-, and Nakhap-types) were genotyped using 82 Fluidigm SNP assay sets for cultivar identification. These 82 SNPs differentiated all cultivars, except seven. The heterozygosity of the SNP loci per cultivar ranged from 12.20 to 69.14%, with an average of 34.2%. Principal component analysis and HC demonstrated that most cultivars were clustered based on their cultivar groups. The Baekdadagi- and Gasi-types were clearly distinguished, while the Nakhap-type was closely related to the Baekdadagi-type. Our results obtained using core Fluidigm SNP assay sets provide useful information for germplasm assessment and cultivar identification, which are essential for breeding and intellectual right protection in cucumber.

6.
Plants (Basel) ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933000

RESUMO

The F-box proteins belong to a family of regulatory proteins that play key roles in the proteasomal degradation of other proteins. Plant F-box proteins are functionally diverse, and the precise roles of many such proteins in growth and development are not known. Previously, two low-temperature-sensitive F-box protein family genes (LTSF1 and LTSF2) were identified as candidates responsible for the sensitivity to low temperatures in the pepper (Capsicum chinense) cultivar 'sy-2'. In the present study, we showed that the virus-induced gene silencing of these genes stunted plant growth and caused abnormal leaf development under low-temperature conditions, similar to what was observed in the low-temperature-sensitive 'sy-2' line. Protein-protein interaction analyses revealed that the LTSF1 and LTSF2 proteins interacted with S-phase kinase-associated protein 1 (SKP1), part of the Skp, Cullin, F-box-containing (SCF) complex that catalyzes the ubiquitination of proteins for degradation, suggesting a role for LTSF1 and LTSF2 in protein degradation. Furthermore, transgenic Nicotiana benthamiana plants overexpressing the pepper LTSF1 gene showed an increased tolerance to low-temperature stress and a higher expression of the genes encoding antioxidant enzymes. Taken together, these results suggest that the LTSF1 and LTSF2 F-box proteins are a functional component of the SCF complex and may positively regulate low-temperature stress tolerance by activating antioxidant-enzyme activities.

7.
ACS Appl Mater Interfaces ; 12(16): 18332-18341, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32239905

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are critical foodborne pathogens, which cause serious human health issues, including hemolytic uremic syndrome. Illnesses caused by STEC lack effective treatments that target the elimination of these bacteria from the gastrointestinal tract without causing an adverse effect. Reducing this pathogen from a reservoir of STEC is an effective strategy, but the challenges remain due to the lack of efficient, selective antimicrobial agents. We developed specific antibody-conjugated chitosan nanoparticles (CNs) to selectively target and treat STEC in the gastrointestinal tract. Given the great broad-spectrum antimicrobial activity of CN, we conjugated antibodies to CN. Antibodies were raised and purified from egg yolks after immunization of hens with seven different O-side-chain antigens isolated from STEC (O26, O45, O103, O111, O121, O145, and O157). We prepared CN-immunoglobulin Y (IgY) conjugates by forming amide bonds at different ratios of CN:IgY (10:1, 10:2, and 10:4). The CN-IgY conjugated at a 10:2 ratio demonstrated significantly enhanced antimicrobial activity against E. coli O157:H7. Conjugates of CN and anti-STEC IgY antibodies killed corresponding STEC serotypes specifically and selectively, while showing no significant impact on nontargeted bacteria, including Salmonella enterica and Lactobacillus plantarum. The enhanced antimicrobial activity of CN-IgY against STEC was also confirmed in synthetic intestinal fluid, as well as an in vivo animal model of Caenorhabditis elegans. These results suggest that the CN-IgY conjugates have strong and specific antimicrobial activity and that they are also great candidates to eliminate pathogens selectively in the gastrointestinal tract without inhibiting beneficial bacteria.


Assuntos
Antibacterianos , Anticorpos Antibacterianos , Trato Gastrointestinal/microbiologia , Nanopartículas/química , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/farmacologia , Caenorhabditis elegans/microbiologia , Galinhas , Quitosana/química , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Gastroenteropatias/microbiologia , Viabilidade Microbiana/efeitos dos fármacos
8.
Front Plant Sci ; 11: 399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328078

RESUMO

The diverse fruit colors of peppers (Capsicum spp.) are due to variations in carotenoid composition and content. Mature fruit color in peppers is regulated by three independent loci, C1, C2, and Y. C2 and Y encode phytoene synthase (PSY1) and capsanthin-capsorubin synthase (CCS), respectively; however, the identity of the C1 gene has been unknown. With the aim of identifying C1, we analyzed two pepper accessions with different fruit colors: Capsicum frutescens AC08-045 and AC08-201, whose fruits are light yellow and white, respectively. Ultra-performance liquid chromatography showed that the total carotenoid content was six times higher in AC08-045 than in AC08-201 fruits, with similar composition of main carotenoids and slight difference in minor components. These results suggest that a genetic factor in AC08-201 may down-regulate overall carotenoid biosynthesis. Analyses of candidate genes related to carotenoid biosynthesis and plastid abundance revealed that both accessions carry non-functional alleles of CCS, golden2-like transcription factor (GLK2), and PSY1. However, a nonsense mutation (C2571T) in PRR2, a homolog of Arabidopsis pseudo response regulator2-like (APRR2), was present in only AC08-201. In a population derived from a cross between AC08-045 and AC08-201, a SNP marker based on the nonsense mutation co-segregated fully with fruit color, implying that the mutation in PRR2 may cause the white color of AC08-201 fruits. Transmission electron microscopy (TEM) of AC08-201 fruit pericarp also showed less developed granum structure in chloroplast and smaller plastoglobule in chromoplast compared to those of AC08-045. Virus-induced gene silencing (VIGS) of PRR2 significantly reduced carotenoid accumulation in Capsicum annuum 'Micropep Yellow', which carries non-functional mutations in both PSY1 and CCS. Furthermore, sequence analysis of PSY1, CCS, and PRR2 in other white pepper accessions of C. annuum and Capsicum chinense showed that they commonly have non-functional alleles in PSY1, CCS, and PRR2. Thus, our data demonstrate that the fruit color locus C1 in Capsicum spp. corresponds to the gene PRR2.

9.
J Exp Bot ; 71(12): 3417-3427, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32219321

RESUMO

Phytoene synthase 1 (PSY1) and capsanthin-capsorubin synthase (CCS) are two major genes responsible for fruit color variation in pepper (Capsicum spp.). However, the role of PSY2 remains unknown. We used a systemic approach to examine the genetic factors responsible for the yellow fruit color of C. annuum 'MicroPep Yellow' (MY) and to determine the role of PSY2 in fruit color. We detected complete deletion of PSY1 and a retrotransposon insertion in CCS. Despite the loss of PSY1 and CCS function, both MY and mutant F2 plants from a cross between MY and the 'MicroPep Red' (MR) accumulated basal levels of carotenoids, indicating that other PSY genes may complement the loss of PSY1. qRT-PCR analysis indicated that PSY2 was constitutively expressed in both MR and MY fruits, and a color complementation assay using Escherichia coli revealed that PSY2 was capable of biosynthesizing a carotenoid. Virus-induced gene silencing of PSY2 in MY resulted in white fruits. These findings indicate that PSY2 can compensate for the absence of PSY1 in pepper fruit, resulting in the yellow color of MY fruits.


Assuntos
Capsicum , Capsicum/genética , Carotenoides , Frutas/genética , Proteínas de Plantas/genética
10.
Plant Sci ; 287: 110181, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31481212

RESUMO

The flavonoid compound anthocyanin is an important plant metabolite with nutritional and aesthetic value as well as anti-oxidative capacity. MYB transcription factors are key regulators of anthocyanin biosynthesis in plants. In pepper (Capsicum annuum), the CaAn2 gene, encoding an R2R3 MYB transcription factor, regulates anthocyanin biosynthesis. However, no functional study or structural analysis of functional and dysfunctional CaAn2 alleles has been performed. Here, to elucidate the function of CaAn2, we generated transgenic Nicotiana benthamiana and Arabidopsis thaliana plants expressing CaAn2. All of the tissues in these plants were purple. Promoter analysis of CaAn2 in purple C. annuum 'KC00134' plants revealed the insertion of a non-long terminal repeat (LTR) retrotransposon designated Ca-nLTR-A. To determine the promoter activity and functional domain of Ca-nLTR-A, various constructs carrying different domains of Ca-nLTR-A fused with GUS were transformed into N. benthamiana. Promoter analysis showed that the 3' untranslated region (UTR) of the second open reading frame of Ca-nLTR-A is responsible for CaAn2 expression in 'KC00134'. Sequence analysis of Ca-nLTR-A identified transcription factor binding sites known to regulate anthocyanin biosynthesis. This study indicates that insertion of a non-LTR retrotransposon in the promoter may activate expression of CaAn2 by recruiting transcription factors at the 3' UTR and thus provides the first example of exaptation of a non-LTR retrotransposon into a new promoter in plants.


Assuntos
Antocianinas/biossíntese , Capsicum/metabolismo , Proteínas de Plantas/metabolismo , Retroelementos/fisiologia , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Arabidopsis , Capsicum/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Retroelementos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana , Técnicas do Sistema de Duplo-Híbrido
11.
Plant Biotechnol J ; 17(6): 1081-1093, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30467964

RESUMO

The diverse colours of mature pepper (Capsicum spp.) fruit result from the accumulation of different carotenoids. The carotenoid biosynthetic pathway has been well elucidated in Solanaceous plants, and analysis of candidate genes involved in this process has revealed variations in carotenoid biosynthetic genes in Capsicum spp. However, the allelic variations revealed by previous studies could not fully explain the variation in fruit colour in Capsicum spp. due to technical difficulties in detecting allelic variation in multiple candidate genes in numerous samples. In this study, we uncovered allelic variations in six carotenoid biosynthetic genes, including phytoene synthase (PSY1, PSY2), lycopene ß-cyclase, ß-carotene hydroxylase, zeaxanthin epoxidase and capsanthin-capsorubin synthase (CCS) genes, in 94 pepper accessions by single-molecule real-time (SMRT) sequencing. To investigate the relationship between allelic variations in the candidate genes and differences in fruit colour, we performed ultra-performance liquid chromatography analysis using 43 accessions representing each allelic variation. Different combinations of dysfunctional mutations in PSY1 and CCS could explain variation in the compositions and levels of carotenoids in the accessions examined in this study. Our results demonstrate that SMRT sequencing technology can be used to rapidly identify allelic variation in target genes in various germplasms. The newly identified allelic variants will be useful for pepper breeding and for further analysis of carotenoid biosynthesis pathways.


Assuntos
Alelos , Capsicum , Carotenoides , Variação Genética , Pigmentos Biológicos , Capsicum/genética , Capsicum/metabolismo , Carotenoides/metabolismo , Frutas/genética , Pigmentos Biológicos/genética , Análise de Sequência de DNA
12.
Nat Commun ; 9(1): 553, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396394

RESUMO

The previously published version of this Article contained errors in Figure 5. In panel c, the second and fourth blot images were incorrectly labeled 'α-Myc' and should have been labelled 'α-HA'. These errors have been corrected in both the PDF and HTML versions of the Article.

13.
Front Microbiol ; 9: 3137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619205

RESUMO

Metritis is a major disease in dairy cows causing animal death, decrease of birth rate, milk production, and economic loss. Antibiotic treatment is generally used to treat such disease but has a high failure rate of 23-35%. The reason for the treatment failure remains unclear, although antibiotic resistance is postulated as one of factors. Our study investigated the prevalence of extended spectrum ß-lactamase (ESBL) producing bacteria in uterine samples of cows with metritis and characterized the isolated intrauterine pathogenic Escherichia coli (IUPEC) strains using whole genome sequencing. We found that the cows with metritis we examined had a high percentage of ESBL producing IUPEC with multi-drug resistance including ceftiofur which is commonly used for metritis treatment. The ESBL producing IUPEC strains harbored versatile antibiotic resistance genes conferring resistance against 29 antibiotic classes, suggesting that transmission of these bacteria to other animals and humans may lead to antibiotic treatment failure. Furthermore, these strains had strong adhesion and invasion activity, along with critical virulence factors, indicating that they may cause infectious diseases in not only the uterus, but also in other organs and hosts.

14.
Nat Commun ; 8(1): 2259, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273730

RESUMO

In Arabidopsis thaliana, CONSTANS (CO) plays an essential role in the regulation of photoperiodic flowering under long-day conditions. CO protein is stable only in the afternoon of long days, when it induces the expression of FLOWERING LOCUS T (FT), which promotes flowering. The blue-light photoreceptor FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) interacts with CO and stabilizes it by an unknown mechanism. Here, we provide genetic and biochemical evidence that FKF1 inhibits CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-dependent CO degradation. Light-activated FKF1 has no apparent effect on COP1 stability but can interact with and negatively regulate COP1. We show that FKF1 can inhibit COP1 homo-dimerization. Mutation of the coiled-coil domain in COP1, which prevents dimer formation, impairs COP1 function in coordinating flowering time. Based on these results, we propose a model whereby the light- and day length-dependent interaction between FKF1 and COP1 controls CO stability to regulate flowering time.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Luz , Fotoperíodo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Arabidopsis , Dimerização , Mutação , Plantas Geneticamente Modificadas , Ubiquitina-Proteína Ligases/metabolismo
15.
New Phytol ; 213(2): 886-899, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27612097

RESUMO

Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.


Assuntos
Capsicum/genética , Capsicum/virologia , Resistência à Doença/genética , Evolução Molecular , Genes de Plantas , Doenças das Plantas/virologia , Potyvirus/fisiologia , Segregação de Cromossomos/genética , Loci Gênicos , Família Multigênica , Mapeamento Físico do Cromossomo , Plantas Geneticamente Modificadas , Nicotiana/virologia
16.
Biomaterials ; 110: 71-80, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27710834

RESUMO

Uterine disease such as metritis is associated with multiple bacterial infections in the uteri after parturition. However, treatment of metritis is challenging due to considerably high antibiotic treatment failure rate with unknown reason. Recently, chitosan microparticles (CM) have been developed to exert broad spectrum antimicrobial activity against bacterial pathogens, including multi-drug resistant bacteria, without raising CM resistant mutants. In this study, we tested, using metagenomics analysis, if CM maintain strong antimicrobial activity against pathogenic bacteria such as Fusobacteriaceae and Bacteroidaceae in cow uteri and evaluated CM's potency as an alternative antimicrobial agent to cure metritis in cows. Here, we report that efficacy of CM treatment for metritis was comparable to the antibiotic ceftiofur, and CM greatly altered uterine microflora of sick animals to healthy uterine microflora. Among uterine bacteria, CM significantly decreased Fusobacterium necrophorum, which is known pathogenic bacteria within the uterus. Taken together, we observed the broad spectrum antimicrobial activity of CM in vivo with an animal model, and further evaluated treatment efficacy in cows with metritis, providing insights into promising use of CM as an alternative antimicrobial agent for controlling uterine disease.


Assuntos
Anti-Infecciosos/uso terapêutico , Infecções por Bacteroidaceae/tratamento farmacológico , Quitosana/uso terapêutico , Infecções por Fusobacteriaceae/tratamento farmacológico , Doenças Uterinas/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Quitosana/farmacologia , Modelos Animais de Doenças , Feminino , Fusobacterium necrophorum/efeitos dos fármacos , Humanos , Resultado do Tratamento , Doenças Uterinas/microbiologia , Útero/microbiologia
17.
Genome Announc ; 4(2)2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056233

RESUMO

We report here the complete genome sequence ofEscherichia coliO157:H7 strain JEONG-1266 isolated from a super- shedder steer in northwest Florida. Cattle are considered a primary reservoir ofE. coliO157:H7, and those cattle that excrete this pathogen in their feces at levels ≥10(4) CFU/g are known as super-shedders.

18.
PLoS One ; 11(1): e0146320, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26751216

RESUMO

Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.


Assuntos
Capsicum/genética , Cucumovirus/enzimologia , Genes de Plantas , RNA Helicases/metabolismo , Agrobacterium/metabolismo , Calreticulina/genética , Cucumovirus/genética , DNA Complementar/metabolismo , Formiato Desidrogenases/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Técnicas do Sistema de Duplo-Híbrido , beta-Galactosidase/metabolismo
19.
Eur Arch Otorhinolaryngol ; 273(4): 879-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25956615

RESUMO

The objective of this study was to evaluate the clinical significance of delayed-onset hearing loss in children. Seventy-three children who underwent cochlear implantation (CI) were included. They were divided into a congenital hearing loss group (n = 50) and a delayed-onset hearing loss group (n = 23). The age at diagnosis of hearing loss, age at the beginning of auditory habilitation, the age at CI, and the postimplant speech perception abilities were compared between the two groups. Children in the congenital hearing loss group were confirmed to have hearing loss at a mean age of 0.3 years, and those in the delayed-onset hearing loss group were diagnosed with hearing loss at a mean age of 2.0 years. Auditory habilitation began at a mean age of 0.4 and 2.0 years, and CI was performed at a mean age of 1.4 and 2.6 years, respectively. Children in the congenital hearing loss group had better scores on speech perception tests than those in the delayed-onset hearing loss group, but the differences were not significant. About half of the children with delayed-onset hearing loss (57 %) had risk factors associated with delayed-onset hearing loss. A high prevalence of delayed-onset hearing loss was noted in the group of children who underwent CI. Risk factors for hearing loss were not found in 43 % of children with delayed-onset hearing loss. Universal screening for delayed-onset hearing loss needs to be performed during early childhood.


Assuntos
Implante Coclear , Perda Auditiva Neurossensorial , Percepção da Fala , Idade de Início , Pré-Escolar , Implante Coclear/métodos , Implante Coclear/reabilitação , Implante Coclear/estatística & dados numéricos , Implantes Cocleares , Diagnóstico Precoce , Feminino , Perda Auditiva Neurossensorial/congênito , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/cirurgia , Testes Auditivos/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Triagem Neonatal/métodos , Prevalência , República da Coreia/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Tempo para o Tratamento
20.
Int J Mol Sci ; 16(11): 26493-505, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26556345

RESUMO

In Arabidopsis, CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS) genes act in repression of photomorphogenesis in darkness, and recent reports revealed that some of these genes, such as COP1 and DET1, also have important roles in controlling flowering time and circadian rhythm. The COP/DET/FUS protein COP10 interacts with DET1 and DNA DAMAGE-BINDING PROTEIN 1 (DDB1) to form a CDD complex and represses photomorphogenesis in darkness. The cop10-4 mutants flower normally in inductive long days (LD) but early in non-inductive short days (SD) compared with wild type (WT); however, the role of COP10 remains unknown. Here, we investigate the role of COP10 in SD-dependent floral repression. Reverse transcription-quantitative PCR revealed that in SD, expression of the LD-dependent floral inducers GI, FKF1, and FT significantly increased in cop10-4 mutants, compared with WT. This suggests that COP10 mainly regulates FT expression in a CO-independent manner. We also show that COP10 interacts with GI in vitro and in vivo, suggesting that COP10 could also affect GI function at the posttranslational level. Moreover, FLC expression was repressed drastically in cop10-4 mutants and COP10 interacts with MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE (MSI4/FVE), which epigenetically inhibits FLC expression. These data suggest that COP10 contributes to delaying flowering in the photoperiod and autonomous pathways by downregulating FT expression under SD.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/genética , Flores/metabolismo , Fotoperíodo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Ligação Proteica , Locos de Características Quantitativas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA