Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38349828

RESUMO

Cancer patients are known to have a higher likelihood of developing Cardiovascular Disease (CVD) compared to non-cancer individuals. Although various types of cancer can contribute to the onset of CVD, lung cancer is inherently linked with increased susceptibility. To bridge this hypothesis, we propose a Lung cancer detection and Cardiovascular Disease Prediction (LCDP) system through lung Computed Tomography (CT) scan images. The lung cancer detection module of the LCDP system utilizes Transfer Learning (TL) with AdaDenseNet for classification. It employs the improvised Proximity-based Synthetic Minority Over-sampling Technique (Prox-SMOTE), improving accuracy. In the CVD prediction module, the feature extraction was performed using the VGG-16 model, followed by classification using a Support Vector Machine (SVM) classifier. The impact and interdependence of lung cancer on CVD were evident in our evaluation, with high accuracies of 98.28% for lung cancer detection and 91.62% for CVD prediction.

2.
MethodsX ; 10: 102100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915859

RESUMO

Aphid species (Insecta, Hemiptera) are economically important invasive pest throughout the world, though their identification is intricate due to tiny size and inconspicuous nature of morphology. Mitochondrial cytochrome c oxidase I (mtCOI) region has been proven to be a standard barcode to identify the diverse array of insect groups. Isolation of good quality DNA is a fundamental first step in insect DNA barcoding which is obtained by standardizing the DNA isolation method. In this study, we demonstrate a modified CTAB method for the isolation of DNA to maximize the quality and yield from small aphids. This method will help the researchers to efficiently isolate DNA from small aphid and the method can be utilized for other small insects as well. We evaluated the quality of the isolated DNA and the mtCOI gene region were subjected to PCR amplification. Further, the gene segment was sequenced and gene annotation was done by NCBI BLAST program through which the insect was found to be Aphis gossypii. This study provides a set of molecular tools that can be used for identification of insect at species level through DNA barcoding and biodiversity analysis.•Detailed method to maximize quality and quantity of genomic DNA isolated from aphids.•Molecular identification of aphids using mtCOI gene amplification and sequence validation.•First report on Aphis gossypii infecting Solanum trilobatum provides insights of pest identification and management.

3.
Diagnostics (Basel) ; 13(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832245

RESUMO

Among the many different types of cancer, bone cancer is the most lethal and least prevalent. More cases are reported each year. Early diagnosis of bone cancer is crucial since it helps limit the spread of malignant cells and reduce mortality. The manual method of detection of bone cancer is cumbersome and requires specialized knowledge. A deep transfer-based bone cancer diagnosis (DTBV) system using VGG16 feature extraction is proposed to address these issues. The proposed DTBV system uses a transfer learning (TL) approach in which a pre-trained convolutional neural network (CNN) model is used to extract features from the pre-processed input image and a support vector machine (SVM) model is used to train using these features to distinguish between cancerous and healthy bone. The CNN is applied to the image datasets as it provides better image recognition with high accuracy when the layers in neural network feature extraction increase. In the proposed DTBV system, the VGG16 model extracts the features from the input X-ray image. A mutual information statistic that measures the dependency between the different features is then used to select the best features. This is the first time this method has been used for detecting bone cancer. Once selected features are selected, they are fed into the SVM classifier. The SVM model classifies the given testing dataset into malignant and benign categories. A comprehensive performance evaluation has demonstrated that the proposed DTBV system is highly efficient in detecting bone cancer, with an accuracy of 93.9%, which is more accurate than other existing systems.

5.
J Med Virol ; 94(10): 4780-4791, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35680610

RESUMO

The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread throughout the world. We used computational tools to assess the spike infectivity, transmission, and pathogenicity of Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) in this study. BA.1 has 39 mutations, BA.1.1 has 40 mutations, BA.2 has 31 mutations, and BA.3 has 34 mutations, with 21 shared mutations between all. We observed 11 common mutations in Omicron's receptor-binding domain (RBD) and sub-variants. In pathogenicity analysis, the Y505H, N786K, T95I, N211I, N856K, and V213R mutations in omicron and sub-variants are predicted to be deleterious. Due to the major effect of the mutations characterizing in the RBD, we found that Omicron and sub-variants had a higher positive electrostatic surface potential. This could increase interaction between RBD and negative electrostatic surface potential human angiotensin-converting enzyme 2 (hACE2). Omicron and sub-variants had a higher affinity for hACE2 and the potential for increased transmission when compared to the wild-type (WT). Negative electrostatic potential of N-terminal domain (NTD) of the spike protein value indicates that the Omicron variant binds receptors less efficiently than the WT. Given that at least one receptor is highly expressed in lung and bronchial cells, the electrostatic potential of NTD negative value could be one of the factors contributing to why the Omicron variant is thought to be less harmful to the lower respiratory tract. Among Omicron sub-lineages, BA.2 and BA.3 have a higher transmission potential than BA.1 and BA.1.1. We predicted that mutated residues in BA.1.1 (K478), BA.2 (R400, R490, and R495), and BA.3 (R397 and H499) formation of new salt bridges and hydrogen bonds. Omicron and sub-variant mutations at Receptor-binding Motif (RBM) residues such as Q493R, N501Y, Q498, T478K, and Y505H all contribute significantly to binding affinity with human ACE2. Interactions with Omicron variant mutations at residues 493, 496, 498, and 501 seem to restore ACE2 binding effectiveness lost due to other mutations like K417N.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Humanos , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Virulência
6.
Front Bioeng Biotechnol ; 10: 865481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573255

RESUMO

The virus-based immunosorbent nanoparticle is a nascent technology being developed to serve as a simple and efficacious agent in biosensing and therapeutic antibody purification. There has been particular emphasis on the use of plant virions as immunosorbent nanoparticle chassis for their diverse morphologies and accessible, high yield manufacturing via plant cultivation. To date, studies in this area have focused on proof-of-concept immunosorbent functionality in biosensing and purification contexts. Here we consolidate a previously reported pro-vector system into a single Agrobacterium tumefaciens vector to investigate and expand the utility of virus-based immunosorbent nanoparticle technology for therapeutic protein purification. We demonstrate the use of this technology for Fc-fusion protein purification, characterize key nanomaterial properties including binding capacity, stability, reusability, and particle integrity, and present an optimized processing scheme with reduced complexity and increased purity. Furthermore, we present a coupling of virus-based immunosorbent nanoparticles with magnetic particles as a strategy to overcome limitations of the immunosorbent nanoparticle sedimentation-based affinity capture methodology. We report magnetic separation results which exceed the binding capacity reported for current industry standards by an order of magnitude.

7.
J Med Virol ; 94(4): 1641-1649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914115

RESUMO

Emerging severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants, especially those of concern, may have an impact on the virus's transmissibility and pathogenicity, as well as diagnostic equipment performance and vaccine effectiveness. Even though the SARS-CoV-2 Delta variant (B.1.617.2) emerged during India's second wave of infections, Delta variants have grown dominant internationally and are still evolving. On November 26, 2021, World Health Organization identified the variant B.1.1.529 as a variant of concern, naming it Omicron, based on evidence that Omicron contains numerous mutations that may influence its behavior. However, the mode of transmission and severity of the Omicron variant remains unknown. We used computational studies to examine the Delta and Omicron variants in this study and found that the Omicron variant had a higher affinity for human angiotensin-converting enzyme 2 (ACE2) than the Delta variant due to a significant number of mutations in the SARS-CoV-2 receptor-binding domain (RBD), indicating a higher potential for transmission. Based on docking studies, the Q493R, N501Y, S371L, S373P, S375F, Q498R, and T478K mutations contribute significantly to high binding affinity with human ACE2. In comparison to the Delta variant, both the entire spike protein and the RBD in Omicron include a high proportion of hydrophobic amino acids such as leucine and phenylalanine. These amino acids are located within the protein's core and are required for structural stability. We observed a disorder-order transition in the Omicron variant between spike protein RBD regions 468-473, and it may be significant in the influence of disordered residues/regions on spike protein stability and binding to ACE2. A future study might investigate the epidemiological and biological consequences of the Omicron variant.


Assuntos
SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , COVID-19/virologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
8.
Crit Rev Biotechnol ; 41(6): 849-864, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33715563

RESUMO

Space missions have always assumed that the risk of spacecraft malfunction far outweighs the risk of human system failure. This assumption breaks down for longer duration exploration missions and exposes vulnerabilities in space medical systems. Space agencies can no longer reduce the majority of the human health and performance risks through crew members selection process and emergency re-supply or evacuation. No mature medical solutions exist to address this risk. With recent advances in biotechnology, there is promise for lessening this risk by augmenting a space pharmacy with a biologically-based space foundry for the on-demand manufacturing of high-value medical products. Here we review the challenges and opportunities of molecular pharming, the production of pharmaceuticals in plants, as the basis of a space medical foundry to close the risk gap in current space medical systems. Plants have long been considered to be an important life support object in space and can now also be viewed as programmable factories in space. Advances in molecular pharming-based space foundries will have widespread applications in promoting simple and accessible pharmaceutical manufacturing on Earth.


Assuntos
Agricultura Molecular , Voo Espacial , Humanos , Lua , Plantas
9.
J Biol Chem ; 295(32): 10926-10939, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32471866

RESUMO

Chemokines mediate leukocyte migration and homeostasis and are key targets in inflammatory diseases including atherosclerosis, cytokine storm, and chronic autoimmune disease. Chemokine redundancy and ensuing network robustness has frustrated therapeutic development. Salivary evasins from ticks bind multiple chemokines to overcome redundancy and are effective in several preclinical disease models. Their clinical development has not progressed because of concerns regarding potential immunogenicity, parenteral delivery, and cost. Peptides mimicking protein activity can overcome the perceived limitations of therapeutic proteins. Here we show that peptides possessing multiple chemokine-binding and anti-inflammatory activities can be developed from the chemokine-binding site of an evasin. We used hydrogen-deuterium exchange MS to map the binding interface of the evasin P672 that physically interacts with C-C motif chemokine ligand (CCL) 8 and synthesized a 16-mer peptide (BK1.1) based on this interface region in evasin P672. Fluorescent polarization and native MS approaches showed that BK1.1 binds CCL8, CCL7, and CCL18 and disrupts CCL8 homodimerization. We show that a BK1.1 derivative, BK1.3, has substantially improved ability to disrupt P672 binding to CCL8, CCL2, and CCL3 in an AlphaScreen assay. Using isothermal titration calorimetry, we show that BK1.3 directly binds CCL8. BK1.3 also has substantially improved ability to inhibit CCL8, CCL7, CCL2, and CCL3 chemotactic function in vitro We show that local as well as systemic administration of BK1.3 potently blocks inflammation in vivo Identification and characterization of the chemokine-binding interface of evasins could thus inspire the development of novel anti-inflammatory peptides that therapeutically target the chemokine network in inflammatory diseases.


Assuntos
Anti-Inflamatórios/química , Quimiocina CCL8/metabolismo , Peptídeos/química , Engenharia de Proteínas , Receptores de Quimiocinas/metabolismo , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/farmacologia , Dimerização , Humanos , Espectrometria de Massas/métodos , Peptídeos/farmacologia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Carrapatos/metabolismo
10.
Front Plant Sci ; 10: 768, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316527

RESUMO

Protein N-glycosylation is an important post-translational modification and has influences on a variety of biological processes at the cellular and molecular level, making glycosylation a major study aspect for glycoprotein-based therapeutics. To achieve a comprehensive understanding on how N-glycosylation impacts protein properties, an Fc-fusion anthrax decoy protein, viz rCMG2-Fc, was expressed in Nicotiana benthamiana plant with three types of N-glycosylation profiles. Three variants were produced by targeting protein to plant apoplast (APO), endoplasmic reticulum (ER) or removing the N-glycosylation site by a point mutation (Agly). Both the APO and ER variants had a complex-type N-glycan (GnGnXF) as their predominant glycans. In addition, ER variant had a higher concentration of mannose-type N-glycans (50%). The decoy protein binds to the protective antigen (PA) of anthrax through its CMG2 domain and inhibits toxin endocytosis. The protein expression, sequence, N-glycosylation profile, binding kinetics to PA, toxin neutralization efficiency, and thermostability were determined experimentally. In parallel, we performed molecular dynamics (MD) simulations of the predominant full-length rCMG2-Fc glycoform for each of the three N-glycosylation profiles to understand the effects of glycosylation at the molecular level. The MAN8 glycoform from the ER variant was additionally simulated to resolve differences between the APO and ER variants. Glycosylation showed strong stabilizing effects on rCMG2-Fc during in planta accumulation, evidenced by the over 2-fold higher expression and less protein degradation observed for glycosylated variants compared to the Agly variant. Protein function was confirmed by toxin neutralization assay (TNA), with effective concentration (EC50) rankings from low to high of 67.6 ng/ml (APO), 83.15 ng/ml (Agly), and 128.9 ng/ml (ER). The binding kinetics between rCMG2-Fc and PA were measured with bio-layer interferometry (BLI), giving sub-nanomolar affinities regardless of protein glycosylation and temperatures (25 and 37°C). The protein thermostability was examined utilizing the PA binding ELISA to provide information on EC50 differences. The fraction of functional ER variant decayed after overnight incubation at 37°C, and no significant change was observed for APO or Agly variants. In MD simulations, the MAN8 glycoform exhibits quantitatively higher distance between the CMG2 and Fc domains, as well as higher hydrophobic solvent accessible surface areas (SASA), indicating a possibly higher aggregation tendency of the ER variant. This study highlights the impacts of N-glycosylation on protein properties and provides insight into the effects of glycosylation on protein molecular dynamics.

11.
Int J Mol Sci ; 19(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659495

RESUMO

Transient recombinant protein production is a promising alternative to stable transgenic systems, particularly for emergency situations in which rapid production of novel therapeutics is needed. In plants, Agrobacterium tumefaciens can be used as a gene delivery vector for transient expression. A potential barrier for plant-based production of human therapeutics is that different glycosylation patterns are found on plant and mammalian proteins. Since glycosylation can affect the efficacy, safety and stability of a therapeutic protein, methods to control glycan structures and distributions in plant-based systems would be beneficial. In these studies, we performed Agrobacterium-mediated transient expression in glycoengineered plant cell suspension cultures. To reduce the presence of plant-specific glycans on the product, we generated and characterized cell suspension cultures from β-1,2-xylosyltransferase and α-1,3-fucosyltransferase knockdown Nicotiana benthamiana. An anthrax decoy fusion protein was transiently produced in these glycoengineered plant cell suspension cultures through co-culture with genetically engineered Agrobacterium. The mass ratio of Agrobacterium to plant cells used was shown to impact recombinant protein expression levels. N-glycosylation analysis on the anthrax decoy fusion protein produced in glycoengineered N. benthamiana showed a dramatic reduction in plant-specific N-glycans. Overall, the results presented here demonstrate the feasibility of a simple, rapid and scalable process for transient production of recombinant proteins without plant-specific glycans in a glycoengineered plant cell culture host.


Assuntos
Técnicas de Cultura de Células/métodos , Nicotiana/citologia , Nicotiana/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Agrobacterium tumefaciens/metabolismo , Técnicas de Cocultura , Glicosilação , Cinética , Mutação/genética , Polissacarídeos/metabolismo , Suspensões , Nicotiana/crescimento & desenvolvimento
12.
Free Radic Biol Med ; 120: 303-310, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29551638

RESUMO

Proteases and reactive oxygen species (ROS) have long been implicated in playing key roles in host tissue injury at sites of inflammation dominated by macrophage activations and/or neutrophil infiltrations. Imbalances between proteases/antiproteases and ROS/antioxidants are recognized to contribute to amplification of inflammatory-based host tissue injury. This has been especially well-documented in such respiratory tract diseases as chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome. Inflammation-related protease/ROS disequilibria are further confounded by recognition that proteases can increase ROS by several different mechanisms and that ROS can inactivate proteases. The major human antiprotease, alpha-1 antitrypsin (AAT), is dramatically inactivated by ROS. AAT deficiency is the most prevalent genetic predisposing factor leading to emphysema, a condition treated by replacement infusions of plasma-derived AAT (hAAT) at a cost of up to $200,000 per year per patient. An updated method for production of a plant-made recombinant AAT (prAAT) engineered for enhanced oxidation resistance compared to hAAT is presented. Plant-made recombinant AAT shows comparable antiprotease activity to hAAT, and retains full activity under oxidative conditions that would deactivate hAAT. Additionally, we show that prAAT has similar effectiveness in preventing neutrophil elastase-induced cell death in an in vitro human bronchial epithelial cell culture model. We conclude that prAAT is potentially a "biobetter" AAT product that could be made available to individuals with a wide spectrum of inflammatory disorders characterized by overly aggressive neutrophilic infiltrations.


Assuntos
Nicotiana , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina , Humanos , Oxirredução , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
13.
Biotechnol Bioeng ; 115(5): 1301-1310, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29411865

RESUMO

Recombinant butyrylcholinesterase produced in a metabolically regulated transgenic rice cell culture (rrBChE) was purified to produce a highly pure (95%), active form of enzyme. The developed downstream process uses common manufacturing friendly operations including tangential flow filtration, anion-exchange chromatography, and affinity chromatography to obtain a process recovery of 42% active rrBChE. The purified rrBChE was then characterized to confirm its comparability to the native human form of the molecule (hBChE). The recombinant and native enzyme demonstrated comparable enzymatic behavior and had an identical amino acid sequence. However, rrBChE differs in that it contains plant-type complex N-glycans, including an α-1,3 linked core fucose, and a ß-1,2 xylose, and lacking a terminal sialic acid. Despite this difference, rrBChE is demonstrated to be an effective stoichiometric bioscavenger for five different organophosphorous nerve agents in vitro. Together, the efficient downstream processing scheme and functionality of rrBChE confirm its promise as a cost-effective alternative to hBChE for prophylactic and therapeutic use.


Assuntos
Butirilcolinesterase/isolamento & purificação , Butirilcolinesterase/metabolismo , Oryza/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Butirilcolinesterase/química , Cromatografia Líquida , Filtração , Glicosilação , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
14.
Int J Mol Sci ; 18(1)2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054967

RESUMO

Anthrax toxin receptor-mediated drug development for blocking anthrax toxin action has received much attention in recent decades. In this study, we produced a secreted anthrax decoy fusion protein comprised of a portion of the human capillary morphogenesis gene-2 (CMG2) protein fused via a linker to the fragment crystallizable (Fc) domain of human immunoglobulin G1 in Nicotiana benthamiana plants using a transient expression system. Using the Cauliflower Mosaic Virus (CaMV) 35S promoter and co-expression with the p19 gene silencing suppressor, we were able to achieve a high level of recombinant CMG2-Fc-Apo (rCMG2-Fc-Apo) protein accumulation. Production kinetics were observed up to eight days post-infiltration, and maximum production of 826 mg/kg fresh leaf weight was observed on day six. Protein A affinity chromatography purification of the rCMG2-Fc-Apo protein from whole leaf extract and apoplast wash fluid showed the homodimeric form under non-reducing gel electrophoresis and mass spectrometry analysis confirmed the molecular integrity of the secreted protein. The N-glycosylation pattern of purified rCMG2-Fc-Apo protein was analysed; the major portion of N-glycans consists of complex type structures in both protein samples. The most abundant (>50%) N-glycan structure was GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 in rCMG2-Fc-Apo recovered from whole leaf extract and apoplast wash fluid. High mannose N-glycan structures were not detected in the apoplast wash fluid preparation, which confirmed the protein secretion. Altogether, these findings demonstrate that high-level production of rCMG2-Fc-Apo can be achieved by transient production in Nicotiana benthamiana plants with apoplast targeting.


Assuntos
Imunoglobulina G/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Receptores de Peptídeos/genética , Sequência de Aminoácidos , Antraz/metabolismo , Antraz/microbiologia , Bacillus anthracis/metabolismo , Biotecnologia , Caulimovirus/genética , Clonagem Molecular , Descoberta de Drogas , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Regiões Promotoras Genéticas , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
15.
Front Plant Sci ; 7: 743, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379103

RESUMO

To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed.

16.
Front Plant Sci ; 7: 412, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066048

RESUMO

An active and tetrameric form of recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, was produced via semicontinuous operation in a transgenic rice cell suspension culture. After transformation of rice callus and screening of transformants, the cultures were scaled up from culture flask to a lab scale bioreactor. The bioreactor was operated through two phases each of growth and expression. The cells were able to produce BChE during both expression phases, with a maximum yield of 1.6 mg BChE/L of culture during the second expression phase. Cells successfully regrew during a 5-day growth phase. A combination of activity assays and Western blot analysis indicated production of an active and fully assembled tetramer of BChE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA