Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 8: 100697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487179

RESUMO

Sourdough technology has been known for its role in the improvement of texture, flavor, and quality of mainly wheat and rye-based breads for decades. However, little is reported about its use in the improvement of whole-grain oat bread, especially concerning flavor formation, which is one major consumer drivers. This study investigated the effects of sourdough obtained by different lactic acid bacteria and yeast starters consortia on the texture and flavor of 100% oat bread. Four different consortia were selected to obtain four oat sourdoughs, which were analyzed to assess the main features due to the different starter fermentation metabolism. Sourdoughs were added to breads as 30% dough weight. Bread quality was technologically monitored via hardness and volume measurements. Sourdough breads were softer and had higher specific volume. The sensory profile of sourdoughs and breads was assessed by a trained panel in sensory laboratory conditions, and the volatile profile was analyzed by HS-SPME-GC-MS. Sourdoughs were rated with higher intensities than untreated control for most of attributes, especially concerning sour aroma and flavor attributes. Sourdough breads were rated with higher intensities than control bread for sour vinegar flavor and total odor intensity, in addition they had richer volatile profile. Our results confirmed that sourdough addition can lead to an enhanced flavor, moreover, it demonstrated that the use of different consortia of lactic acid bacteria and yeast strains leads to the improvement of texture and altered sensory profile of whole-oat bread.

2.
Food Res Int ; 162(Pt A): 112036, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461256

RESUMO

Faba bean, processed into ingredients (flour, protein concentrate, protein isolate), can be extruded to meat alternatives with a fibrous texture. Despite its importance for consumer acceptance, not enough is known about the flavor of faba bean ingredients nor about the chemical and sensory changes caused by high-moisture extrusion. Therefore, the aim of this work was to describe the flavor of faba bean ingredients and the corresponding extrudates and to understand how their composition affects the perception of sensory attributes. Firstly, faba bean protein ingredients and extrudates were characterized for lipid-degrading enzymatic activities, flavor precursors, and volatile and non-volatile flavor-active compounds. Secondly, sensory profiling was conducted. Thirdly, partial least squares regression was applied to understand the relationship between chemical and sensory data. This study showed that faba bean protein concentrate had the strongest taste and aftertaste (respectively 7 and 6, on a 0-10 intensity scale), bitterness (6-7), and pea flavor and odor (respectively 6 and 5), whereas faba bean protein isolate had the strongest cereal flavor (4) and odor (4), and off-flavor (2) and off-odor (3). Faba bean flour had the mildest flavor. High-moisture extrusion brought several chemical changes to the ingredients, including the formation of several volatile compounds and inactivation of lipid-degrading enzymes. Only traces of tannins were found in extrudates. The presence of free phenolics, vicine, and convicine was linked to strong taste and aftertaste, bitterness, and a drying sensation of the mouth, whereas lipid oxidation products were related to pea, cereal, and off-odors and flavors.


Assuntos
Vicia faba , Paladar , Veículos Farmacêuticos , Farinha , Grão Comestível , Lipídeos
3.
Foods ; 11(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36429171

RESUMO

Fermentation with Weissella confusa A16 could improve the flavor of various plant-based sources. However, less is known about the influence of fermentation conditions on the profile of volatile compounds, dextran synthesis and acidity. The present work investigates the synthesis of potential flavor-active volatile compounds, dextran, acetic acid, and lactic acid, as well as the changes in viscosity, pH, and total titratable acidity, during fermentation of faba bean protein concentrate with W. confusa A16. A Response Surface Methodology was applied to study the effect of time, temperature, dough yield, and inoculum ratio on the aforementioned responses. Twenty-nine fermentations were carried out using a Central Composite Face design. A total of 39 volatile organic compounds were identified: 2 organic acids, 7 alcohols, 8 aldehydes, 2 alkanes, 12 esters, 3 ketones, 2 aromatic compounds, and 3 terpenes. Long fermentation time and high temperature caused the formation of ethanol and ethyl acetate and the reduction of hexanal, among other compounds linked to the beany flavor. Levels of dextran, acetic acid, and lactic acid increased with increasing temperature, time, and dough yield. Optimal points set for increased dextran and reduced acidity were found at low temperatures and high dough yield. Such conditions would result in hexanal, ethyl acetate and ethanol having a relative peak area of 35.9%, 7.4%, and 4.9%, respectively.

4.
Nutr Bull ; 47(4): 423-437, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36213966

RESUMO

Urbanisation is hastening the transition from traditional food habits to less healthy diets, which are becoming more common among Kenyans. No up-to-date studies on usual dietary intake and the main food sources of adult Kenyans are available. The aim of the present study was to identify the main food sources of nutrients in the diet of urban adult Kenyans and explore potential associations with demographic variables including age, sex, level of education, occupation and body mass index. The study adopted a cross-sectional design. The dietary intake of 486 adult Kenyans from Nairobi was assessed using a validated, culture-sensitive, semi-quantitative food frequency questionnaire. Binary logistic regression models were used to evaluate associations between food sources and demographic variables. Macronutrient intakes as a proportion of total energy intake (TEI) were within international dietary guidelines. Cereals and grain products (34.0%), sugar, syrups, sweets and snacks (9.8%), fruits (9.7%) and meat and eggs (8.8%) were the major contributors to TEI. Cereals and grain products contributed 42.5% to carbohydrates, followed by fruits (12.4%) and sugar, syrups, sweets and snacks (10.6%). The most important sources of protein and total fat were cereals and grain products (23.3% and 19.7%, respectively) and meat and eggs (22.0% and 18.7%, respectively). Sex, age and level of education were associated with the choice of food groups. Although macronutrient intakes were within guidelines, the Kenyan diet was revealed to be high in sugars, salt and fibre, with differences in food sources according to demographic variables. These results can act as an incentive to national authorities to implement nutritional strategies aiming to raise awareness of healthier dietary patterns among Kenyans.


Assuntos
Gorduras na Dieta , Ingestão de Alimentos , Adulto , Humanos , Quênia/epidemiologia , Estudos Transversais , Grão Comestível , Açúcares
5.
Compr Rev Food Sci Food Saf ; 21(3): 2898-2929, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470959

RESUMO

Demand for plant-based meat alternatives has increased in recent years due to concerns about health, ethics, the environment, and animal welfare. Nevertheless, the market share of plant-based meat alternatives must increase significantly if they are to support sustainable food production and consumption. Flavor is an important limiting factor of the acceptability and marketability of plant-based meat alternatives. Undesirable chemosensory perceptions, such as a beany flavor, bitter taste, and astringency, are often associated with plant proteins and products that use them. This study reviewed 276 articles to answer the following five research questions: (1) What are the volatile and nonvolatile compounds responsible for off-flavors? (2) What are the mechanisms by which these flavor compounds are generated? (3) What is the influence of thermal extrusion cooking (the primary structuring technique to transform plant proteins into fibrous products that resemble meat in texture) on the flavor characteristics of plant proteins? (4) What techniques are used in measuring the flavor properties of plant-based proteins and products? (5) What strategies can be used to reduce off-flavors and improve the sensory appeal of plant-based meat alternatives? This article comprehensively discusses, for the first time, the flavor issues of plant-based meat alternatives and the technologies available to improve flavor and, ultimately, acceptability.


Assuntos
Carne , Paladar , Bem-Estar do Animal , Animais , Culinária , Carne/análise , Proteínas de Plantas
6.
Foods ; 11(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407028

RESUMO

There is a growing need for plant-based yogurts that meet consumer demands in terms of texture. However, more research is required to understand the relationship between physicochemical and mouthfeel properties in plant-based yogurts. The purpose of this study was to determine the physicochemical properties of five commercial plant-based yogurt alternatives with different chemical compositions, making comparisons to dairy yogurts and thick, creamy, thin, and watery mouthfeel sensations. The physicochemical parameters studied included large and small deformation rheology, particle size, soluble solids, acidity, and chemical composition. Significant differences in flow behavior and small deformation rheology were found between dairy- and plant-based yogurts. Among plant-based yogurts thick, creamy, thin, and watery mouthfeel sensations were strongly associated with steady shear rates and apparent viscosity. The results highlight the importance of large deformation rheology to advance the use of plant-based ingredients in the development of yogurt alternatives. Furthermore, this study demonstrates that dairy- and plant-based yogurts with a similar mouthfeel profiles may have different viscoelastic properties, which indicates that instrumental and sensory methods should not be considered substitutive but complementary methods when developing plant-based yogurts in a cost-effective and timely manner.

7.
J Appl Microbiol ; 133(1): 76-90, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34687568

RESUMO

AIMS: The aim of this study was to investigate the effectiveness of bread as substrate for γ-aminobutyric acid (GABA) biosynthesis, establishing a valorization strategy for surplus bread, repurposing it within the food chain. METHODS AND RESULTS: Surplus bread was fermented by lactic acid bacteria (LAB) to produce GABA. Pediococcus pentosaceus F01, Levilactobacillus brevis MRS4, Lactiplantibacillus plantarum H64 and C48 were selected among 33 LAB strains for the ability to synthesize GABA. Four fermentation experiments were set up using surplus bread as such, added of amylolytic and proteolytic enzymes, modifying the pH or mixed with wheat bran. Enzyme-treated slurries led to the release of glucose (up to 20 mg g-1 ) and free amino acid, whereas the addition of wheat bran (30% of bread weight) yielded the highest GABA content (circa 800 mg kg-1 of dry weight) and was the most suitable substrate for LAB growth. The selected slurry was ultimately used as an ingredient in bread making causing an increase in free amino acids. CONCLUSIONS: Besides the high GABA concentration (148 mg kg-1 dough), the experimental bread developed in this study was characterized by good nutritional properties, highlighting the efficacy of tailored bioprocessing technologies as means to mitigate food wastage. SIGNIFICANCE AND IMPACT OF STUDY: Our results represent a proof of concept of effective strategies to repurpose food industry side streams.


Assuntos
Pão , Lactobacillales , Pão/microbiologia , Fibras na Dieta/metabolismo , Fermentação , Microbiologia de Alimentos , Lactobacillales/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
Foods ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828846

RESUMO

Daily use of wholegrain foods is generally recommended due to strong epidemiological evidence of reduced risk of chronic diseases. Cereal grains, especially the bran part, have a high content of dietary fiber (DF). Cereal DF is an umbrella concept of heterogeneous polysaccharides of variable chemical composition and molecular weight, which are combined in a complex network in cereal cell walls. Cereal DF and its distinct components influence food digestion throughout the gastrointestinal tract and influence nutrient absorption and other physiological reactions. After repeated consumption of especially whole grain cereal foods, these effects manifest in well-demonstrated health benefits. As cereal DF is always consumed in the form of processed cereal food, it is important to know the effects of processing on DF to understand, safeguard and maximize these health effects. Endogenous and microbial enzymes, heat and mechanical energy during germination, fermentation, baking and extrusion destructurize the food and DF matrix and affect the quantity and properties of grain DF components: arabinoxylans (AX), beta-glucans, fructans and resistant starch (RS). Depolymerization is the most common change, leading to solubilization and loss of viscosity of DF polymers, which influences postprandial responses to food. Extensive hydrolysis may also remove oligosaccharides and change the colonic fermentability of DF. On the other hand, aggregation may also occur, leading to an increased amount of insoluble DF and the formation of RS. To understand the structure-function relationship of DF and to develop foods with targeted physiological benefits, it is important to invest in thorough characterization of DF present in processed cereal foods. Such understanding also demands collaborative work between food and nutritional sciences.

9.
Microb Cell Fact ; 20(1): 23, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482833

RESUMO

BACKGROUND: Lactic acid bacteria can synthesize dextran and oligosaccharides with different functionality, depending on the strain and fermentation conditions. As natural structure-forming agent, dextran has proven useful as food additive, improving the properties of several raw materials with poor technological quality, such as cereal by-products, fiber-and protein-rich matrices, enabling their use in food applications. In this study, we assessed dextran biosynthesis in situ during fermentation of brewers´ spent grain (BSG), the main by-product of beer brewing industry, with Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. The starters performance and the primary metabolites formed during 24 h of fermentation with and without 4% sucrose (w/w) were followed. RESULTS: The starters showed similar growth and acidification kinetics, but different sugar utilization, especially in presence of sucrose. Viscosity increase in fermented BSG containing sucrose occurred first after 10 h, and it kept increasing until 24 h concomitantly with dextran formation. Dextran content after 24 h was approximately 1% on the total weight of the BSG. Oligosaccharides with different degree of polymerization were formed together with dextran from 10 to 24 h. Three dextransucrase genes were identified in L. pseudomesenteroides DSM20193, one of which was significantly upregulated and remained active throughout the fermentation time. One dextransucrase gene was identified in W. confusa A16 also showing a typical induction profile, with highest upregulation at 10 h. CONCLUSIONS: Selected lactic acid bacteria starters produced significant amount of dextran in brewers' spent grain while forming oligosaccharides with different degree of polymerization. Putative dextransucrase genes identified in the starters showed a typical induction profile. Formation of dextran and oligosaccharides in BSG during lactic acid bacteria fermentation can be tailored to achieve specific technological properties of this raw material, contributing to its reintegration into the food chain.


Assuntos
Dextranos/biossíntese , Grão Comestível/metabolismo , Fermentação , Leuconostoc/metabolismo , Weissella/metabolismo , Cerveja , Regulação Enzimológica da Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillales/genética , Lactobacillales/metabolismo , Leuconostoc/genética , Leuconostoc/crescimento & desenvolvimento , Manitol/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Sacarose/metabolismo , Viscosidade , Weissella/genética , Weissella/crescimento & desenvolvimento
10.
Public Health Nutr ; 24(5): 834-844, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32705973

RESUMO

OBJECTIVE: To develop a semi-quantitative FFQ and to evaluate its validity and reproducibility for the assessment of total dietary intake of Kenyan urban adult population, given its non-existence in Kenya. DESIGN: The current study adopted a cross-sectional design. A culture-sensitive semi-quantitative FFQ was developed and its validity was tested relative to three non-consecutive 24-h recalls (24hR). Reproducibility was tested by the test-retest method, with a 3-week interval. Spearman's correlation coefficients and intra-class correlation coefficients were calculated for several macro- and micronutrients. Cross-classification into quartiles and Bland and Altman plots were analysed. SETTING: Nairobi county (Dagoreti South and Starehe constituencies). PARTICIPANTS: A convenient sample was recruited in three different clusters in Nairobi. RESULTS: A culture-sensitive 123-food-item semi-quantitative FFQ showed higher nutrient intakes compared with the 24hR (total energy median 12543·632 v. 8501·888 kJ, P < 0·001). Energy-adjusted and deattenuated Spearman's correlations for macronutrients ranged between 0·21 (total fat) and 0·47 (protein). The agreement in the same quartile varied from 28 % (protein) to 41 % (carbohydrates). Including adjacent quartiles, the range increased: 76 % (protein and fat) to 81 % (carbohydrates). The extreme disagreement was low. The first FFQ application resulted in higher mean values for all nutrients compared with the second FFQ (total energy median 12459·952 v. 10485·104 kJ, P < 0·001). Energy-adjusted correlations for macronutrients ranged from 0·28 (carbohydrates) to 0·61 (protein). Intra-class correlation coefficients for macronutrients were moderate, between 0·6 and 0·7. CONCLUSIONS: The developed semi-quantitative FFQ was shown to be a valid and reproducible tool for ranking urban adult Kenyans according to their dietary intake.


Assuntos
Dieta , Ingestão de Energia , Adulto , Estudos Transversais , Registros de Dieta , Inquéritos sobre Dietas , Humanos , Quênia , Micronutrientes , Reprodutibilidade dos Testes , Inquéritos e Questionários
11.
Food Chem ; 333: 127491, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659672

RESUMO

A cascade process for the sequential recovery of proteins and feruloylated arabinoxylan from wheat bran is proposed, involving a protein isolation step, enzymatic destarching and subcritical water extraction. The protein isolation step combining lactic acid fermentation and cold alkaline extraction reduced the recalcitrance of wheat bran, thus improving the total yields of the subsequent subcritical water extraction. The time evolution of subcritical water extraction of feruloylated arabinoxylan was compared at two temperatures (160 °C and 180 °C). Longer residence times enhanced the purity of target feruloylated arabinoxylans, whereas higher temperatures resulted in faster extraction at the expense of significant molar mass reduction. The radical scavenging activity of the extracted feruloylated arabinoxylans was preserved after the initial protein isolation step. This study opens new possibilities for the cascade valorization of wheat bran into enriched protein and non-starch polysaccharide fractions, which show potential to be used as functional food ingredients.


Assuntos
Fracionamento Químico/métodos , Ácidos Cumáricos/química , Fibras na Dieta/análise , Proteínas de Plantas/isolamento & purificação , Xilanos/química , Xilanos/isolamento & purificação , Temperatura Alta , Peso Molecular
12.
Int J Food Microbiol ; 327: 108652, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32442778

RESUMO

Food-grade waste and side streams should be strictly kept in food use in order to achieve sustainable food systems. At present, the baking industry creates food-grade waste as excess and deformed products that are mainly utilized for non-food uses, such as bioethanol production. The purpose of this study was therefore to explore the potential of waste wheat bread recycling for fresh wheat bread production. Waste bread recycling was assessed without further processing or after tailored fermentation with lactic acid bacteria producing either dextran or ß-glucan exopolysaccharides. When non-treated waste bread slurry was added to new bread dough, bread quality (specific volume and softness) decreased with increasing content of waste bread addition. In situ EPS-production (dextran and microbial ß-glucan) significantly increased waste bread slurry viscosity and yielded residual fructose or glucose that could effectively replace the sugar added for yeast leavening. Furthermore, fermentation acidified waste bread matrix, thus improving the hygienic safety of the process. Bread containing dextran synthesized in situ by Weissella confusa A16 showed good technological quality. The produced dextran compensated the adverse effect of recycled bread on new bread quality attributes by 12% increase in bread specific volume and 37% decrease in crumb hardness. In this study, a positive technological outcome of the bread containing microbial ß-glucan was not detected. The waste bread fermented by W. confusa A16 containing dextran appears to enable safe bread recycling with low acidity and minimal quality loss.


Assuntos
Pão/microbiologia , Pão/normas , Fermentação , Indústria Alimentícia , Resíduos Industriais , Reciclagem/métodos , Triticum/microbiologia , Dextranos/metabolismo , Ácido Láctico/metabolismo , Weissella/metabolismo , Leveduras/metabolismo , beta-Glucanas/metabolismo
14.
Front Microbiol ; 10: 1541, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333632

RESUMO

The present study investigated the effect of co-fermentation on vitamin B12 content and microbiological composition of wheat bran. Propionibacterium freudenreichii DSM 20271 was used as the producer of vitamin while Lactobacillus brevis ATCC 14869 was selected to ensure the microbial safety of the bran dough. Fermentation trials were conducted in bioreactors to monitor and adjust the pH of the ferments. Vitamin B12 level reached 357 ± 8 ng/g dry weight (dw) after 1 day of pH-controlled fermentation with P. freudenreichii monoculture and remained stable thereafter. In co-fermentation with L. brevis, slightly less vitamin B12 (255 ± 31 ng/g dw) was produced in 1 day and an effective inhibition of the growth of total Enterobacteriaceae and Bacillus cereus was obtained. On day 3, vitamin B12 content in pH-controlled co-fermentation increased to 332 ± 44 ng/g dw. On the other hand, without a pH control, co-fermentation resulted in a stronger inhibition of Enterobacteriaceae and B. cereus but a lower level of vitamin B12 (183 ± 5 ng/g dw on day 3). These results demonstrated that wheat bran fermented by P. freudenreichii and L. brevis can be a promising way to produce vitamin B12 fortified plant-origin food ingredients, which could reduce cereal waste streams and contribute to a more resilient food chain.

15.
Food Chem ; 289: 103-111, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30955591

RESUMO

The effect of three combinations of bioprocessing methods by lactic acid fermentation, cell wall hydrolyzing enzymes and phytase on the biochemical (protein, fat, carbohydrate composition) and technofunctional properties (protein solubility, emulsifying and foaming properties) of wheat bran protein isolates were evaluated. The bioprocessing increased the protein (up to 80%) and fat content (up to 22.8%) in the isolates due to the degradation of starch and soluble pentosans. Additional proteins, globulin 3A and 3C, chitinase, ß-amylase and LMW glutenins, were identified from the electrophoretic pattern of the protein isolate bioprocessed with added enzymes. Generally, the bioprocessed protein isolate had lower protein solubility and stronger net charge in pH below 7, when compared to the protein isolate made without bioprocessing. The emulsifying properties of the protein isolates were not affected by bioprocessing. However, the foaming stability of the protein isolates was nearly doubled by bioprocessing with cell wall hydrolyzing enzymes and phytase.


Assuntos
Fibras na Dieta/metabolismo , Proteínas de Plantas/química , Quitinases/química , Quitinases/isolamento & purificação , Quitinases/metabolismo , Eletroforese em Gel de Poliacrilamida , Hidrólise , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Estabilidade Proteica , Solubilidade , Amido/metabolismo , beta-Amilase/química , beta-Amilase/isolamento & purificação , beta-Amilase/metabolismo
16.
Food Funct ; 10(4): 1958-1973, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30888350

RESUMO

The snack product category is lacking palatable, high dietary fiber containing products. This study explored how the addition of native or fermented rye bran influences the texture and sensory properties of endosperm rye flour based extrudates. In addition, mastication and bolus properties (n = 26), and in vitro starch digestibility were assessed. Three high fiber extrudates based on endosperm rye flour (EF) were produced with addition of either 40% native rye bran (NBE) or 40% fermented rye bran (FBE), and with no added bran (EFE) to achieve two pairs of extrudates to compare. EFE and FBE had different composition but resembled each other regarding macrostructure and the second pair (NBE vs. FBE) had similar core composition but different structure due to bran fermentation. The fermentation of bran was performed using exopolysaccharide (EPS)-producing strain Weissella confusa, which led to 3% (3 g per 100 g bran; dry weight) in situ dextran production. The compositionally similar extrudates (NBE vs. FBE) varied in both structure and instrumental texture: FBE were less dense, less hard and crispier than NBE. The extrudates with different composition (EFE vs. FBE) varied regarding instrumental texture: FBE were less hard and crispier than EFE. There were also subtle structural differences FBE being somewhat denser than EFE. NBE and FBE differed regarding sensory texture while textures of EFE and FBE were perceived similar. Mastication properties of the different products did not exhibit remarkable differences. There was a large number of smaller particles in both NBE and FBE bolus samples. The fragile structure of FBE, and its lower bolus viscosity, led to high in vitro starch digestibility. The results demonstrate that the structural attributes of the extrudates, rather than the core composition, dictate the breakdown pattern during mastication and in vitro starch digestibility. The extrudates with similar composition may be digested at different rates depending on their structural attributes. Although FBE had higher in vitro starch digestibility, its high DF content, palatable texture and improved sensory properties were important determinants underlying eating quality and therefore it could be a promising product to snack food category.


Assuntos
Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Secale/química , Amido/metabolismo , Adulto , Digestão , Feminino , Fermentação , Farinha/análise , Dureza , Humanos , Mastigação , Secale/metabolismo , Sementes/química , Sementes/metabolismo , Lanches , Paladar , Weissella/metabolismo , Adulto Jovem
17.
Food Chem ; 285: 221-230, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797339

RESUMO

The effect of dextran produced in situ by Weissella confusa on the structure and nutrition quality of whole grain pearl millet bread containing 50% of wheat flour was investigated. NMR spectroscopy analysis indicated that the dextran formed by the strain consisted of a α-(1 → 6)-linked linear backbone and 3% α-(1 → 3) branches, and had a molar mass of 3.3 × 106 g/mol. In situ production resulted in 3.5% dextran (DW) which significantly enhanced the dough extensional properties, increased the bread specific volume (∼13%) and decreased crumb firmness (∼43%), moisture loss (∼15%) and staling rate (∼10%), compared to the control millet bread. DSC analysis showed that amylopectin recrystallization was significantly reduced in the bread containing dextran. In situ dextran production altered the nutritional value of millet, leading to increased free phenolic content (∼30%) and antioxidant activity. It also markedly lowered the bread predicted glycemic index and improved in vitro protein digestibility.


Assuntos
Pão/análise , Dextranos/química , Valor Nutritivo , Pennisetum/metabolismo , Reologia , Amilopectina/química , Antioxidantes/química , Varredura Diferencial de Calorimetria , Farinha/análise , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Fenóis/química , Fenóis/metabolismo , Grãos Integrais/química
18.
Food Res Int ; 115: 191-199, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599931

RESUMO

The aim of this study was to investigate the impact of in situ produced exopolysaccharides (EPS) on the rheological and textural properties of fava bean protein concentrate (FPC). EPS (dextrans) were produced from sucrose by two lactic acid bacteria (LAB). The acidification, rheology, and texture of FPC pastes fermented with Leuconostoc pseudomesenteroides DSM 20193 and Weissella confusa VTT E-143403 (E3403) were compared. A clear improvement in rheological and textural parameters was observed in sucrose-added pastes after fermentation, especially with W. confusa VTT E3403. Only moderate proteolysis of fava bean protein during fermentation was observed. The microstructure of the protein in FPC pastes, as observed by confocal laser scanning microscopy, revealed a less continuous and denser structure in EPS-abundant pastes. The beneficial structure formed during EPS-producing fermentation could not be mimicked by simply mixing FPC, isolated dextran, lactic acid, and acetic acid with water. These results emphasize the benefits of in situ produced EPS in connection with the LAB fermentation of legume protein-rich foods. Fermentation with EPS-producing LAB is a cost-effective and clean-labeled technology to obtain tailored textures, and it can further enhance the usability of legumes in novel foods.


Assuntos
Fermentação , Polissacarídeos/metabolismo , Reologia , Vicia faba/metabolismo , Ácido Acético/metabolismo , Dextranos/metabolismo , Fabaceae/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico , Lactobacillales/metabolismo , Leuconostoc/metabolismo , Manitol/metabolismo , Sacarose/metabolismo , Weissella/metabolismo
19.
Int J Food Microbiol ; 302: 24-34, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30172442

RESUMO

The interest towards legumes in food applications has risen over the past decades. However, the presence of antinutritional factors (ANF) and the poor technological performances still restricts their application in food fortification. In this study, four lactic acid bacteria (LAB) isolated from faba bean were applied as starter cultures for faba bean bioprocessing. None of the strains employed produced exopolysaccharides from raffinose, on the contrary, they did with sucrose as substrate. The fermented doughs were characterized and the strains were compared for their adaptation capacity and metabolic performance including the formation of dextrans, the degradation of ANF and the ability to improve antioxidant activity and in vitro protein digestibility (IVPD). A contribution to the proteolysis was given by the presence of endogenous enzymes, responsible for the increase of peptides and amino acids in dough from irradiated flour. However, the LAB strains further enhanced proteolysis. Weissella cibaria VTT E-153485 led to the highest peptide release and consequentially to the highest IVPD. In doughs fermented with Pediococcus pentosaceus VTT E-153483 and Leuconostoc kimchi VTT E-153484, phytic acid was reduced to more than half the initial concentration. Inoculated doughs had significantly lower content of oligosaccharides after 24 h of incubation compared to the controls. The most efficient raffinose consumption was found for Leuc. kimchi and W. cibaria. Doughs inoculated with weissellas contained >1% of dextrans. Weissella confusa VTT E-143403 induced a significant increment in viscosity (ca. 7 times higher than the controls). This study revealed that well-characterized, indigenous LAB provided beneficial biotechnological features in faba bean dough processing and contributed to its implementation in the food production.


Assuntos
Microbiologia de Alimentos , Lactobacillales/metabolismo , Vicia faba/microbiologia , Dextranos/metabolismo , Fermentação , Farinha/microbiologia , Manipulação de Alimentos , Leuconostoc/isolamento & purificação , Pediococcus pentosaceus/metabolismo , Ácido Fítico/metabolismo , Sacarose/metabolismo , Viscosidade , Weissella/metabolismo
20.
Food Microbiol ; 76: 164-172, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166137

RESUMO

This study focused on the performance of the dextran producer Leuconostoc citreum as starter culture during 30 days of wheat flour type I sourdough propagation (back-slopping). As confirmed by RAPD-PCR analysis, the strain dominated throughout the propagation procedure, consisting of daily fermentations at 20 °C. The sourdoughs were characterized by consistent lactic acid bacteria cell density and acidification parameters, reaching pH values of 4.0 and mild titratable acidity. Carbohydrates consumption remained consistent during the propagation procedure, leading to formation of mannitol and almost equimolar amount of lactic and acetic acid. The addition of sucrose enabled the formation of dextran, inducing an increase in viscosity of the sourdough of 2-2.6 fold, as well as oligosaccharides. The transcriptional analysis based on glucosyltransferases genes (GH70) showed the existence in L. citreum FDR241 of at least five different dextransucrases. Among these, only one gene, previously identified as forming only α-(1-6) glycosidic bonds, was significantly upregulated in sourdough fermentation conditions, and the main responsible of dextran formation. A successful application of a starter culture during long sourdough back-slopping procedure will depend on the strain robustness and fermentation conditions. Transcriptional regulation of EPS-synthetizing genes might contribute to increase the efficiency of industrial processes.


Assuntos
Farinha/microbiologia , Leuconostoc/genética , Leuconostoc/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Transcrição Gênica , Triticum/microbiologia , Fermentação , Microbiologia de Alimentos , Perfilação da Expressão Gênica , Glucosiltransferases/genética , Glicosiltransferases , Leuconostoc/efeitos dos fármacos , Leuconostoc/enzimologia , Reação em Cadeia da Polimerase/métodos , Sacarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA