RESUMO
Solving the electronic structure problem is a notorious challenge in quantum chemistry and material science. Variational quantum eigensolver (VQE) is a promising hybrid classical-quantum algorithm for finding the lowest-energy configuration of a molecular system. However, it typically requires many qubits and quantum gates with substantial quantum circuit depth to accurately represent the electronic wave function of complex structures. Here, we propose an alternative approach to solve the electronic structure problem using VQE with a single qudit. Our approach exploits a high-dimensional orbital angular momentum state of a heralded single photon and notably reduces the required quantum resources compared to conventional multi-qubit-based VQE. We experimentally demonstrate that our single-qudit-based VQE can efficiently estimate the ground state energy of hydrogen (H2) and lithium hydride (LiH) molecular systems corresponding to two- and four-qubit systems, respectively. We believe that our scheme opens a pathway to perform a large-scale quantum simulation for solving more complex problems in quantum chemistry and material science.
RESUMO
A reliable measurement of blood folate levels is necessary in the clinical field to prevent serious diseases such as cognitive impairment and neural tube defects. Herein, the certification of the low-content folic acid (FA) and 5-methyltetrahydrofolate (5-Me-THF) in human plasma certified reference material (KRISS CRM 111-01-018) was performed. A human plasma pool obtained from the Korean Red Cross was used as a CRM candidate. The certification of the human plasma CRM was performed by isotope dilution ultra-performance liquid chromatography/tandem mass spectrometry. Two-dimensional liquid chromatography was employed to confirm the validity of the analytical method for FA due to the susceptibility of FA to matrix effects because of its limited quantity. The CRM stability was evaluated at -20 °C for 2 months and at -70 °C for up to 12 months to determine the certified value of the CRM. The certified value of the CRM was (84.6 ± 4.3) ng kg-1 and (5.80 ± 0.47) µg kg-1 for FA and 5-Me-THF, respectively. The homogeneity of the CRM was 1.64% and 3.10% for FA and 5-Me-THF, respectively. Further long-term stability assessments were conducted, indicating that the CRM remains valid for at least 58 months at -70 °C for FA and 48 months for 5-Me-THF. Compared to other blood-based CRMs, this CRM has lower folate levels, making it helpful in establishing analytical methods for a broader range of folate levels.
Assuntos
Ácido Fólico , Espectrometria de Massas em Tandem , Tetra-Hidrofolatos , Humanos , Tetra-Hidrofolatos/sangue , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ácido Fólico/sangue , Padrões de Referência , Estabilidade de MedicamentosRESUMO
Irritable bowel syndrome (IBS) is a gastrointestinal (GI) disease accompanied by changes in bowel habits without any specific cause. Gintonin is a newly isolated glycoprotein from ginseng that is a lysophosphatidic acid (LPA) receptor ligand. To investigate the efficacy and mechanisms of action of gintonin in IBS, we developed a zymosan-induced IBS murine model. In addition, electrophysiological experiments were conducted to confirm the relevance of various ion channels. In mice, gintonin restored colon length and weight to normal and decreased stool scores, whilst food intake remained constant. Colon mucosal thickness and inflammation-related tumor necrosis factor-α levels were decreased by gintonin, along with a reduction in pain-related behaviors. In addition, the fecal microbiota from gintonin-treated mice had relatively more Lactobacillaceae and Lachnospiraceae and less Bacteroidaceae than microbiota from the control mice. Moreover, gintonin inhibited transient receptor potential vanilloid (TRPV) 1 and TRPV4 associated with visceral hypersensitivity and voltage-gated Na+ 1.5 channels associated with GI function. These results suggest that gintonin may be one of the effective components in the treatment of IBS.
RESUMO
(1) Background: Irritable bowel syndrome (IBS) is a common disease in the gastrointestinal (GI) tract. Atractylodes macrocephala Koidz (AMK) is known as one of the traditional medicines that shows a good efficacy in the GI tract. (2) Methods: We investigated the effect of AMK in a network pharmacology and zymosan-induced IBS animal model. In addition, we performed electrophysiological experiments to confirm the regulatory mechanisms related to IBS. (3) Results: Various characteristics of AMK were investigated using TCMSP data and various analysis systems. AMK restored the macroscopic changes and weight to normal. Colonic mucosa and inflammatory factors were reduced. These effects were similar to those of amitriptyline and sulfasalazine. In addition, transient receptor potential (TRP) V1, voltage-gated Na+ (NaV) 1.5, and NaV1.7 channels were inhibited. (4) Conclusion: These results suggest that AMK may be a promising therapeutic candidate for IBS management through the regulation of ion channels.
Assuntos
Atractylodes , Modelos Animais de Doenças , Síndrome do Intestino Irritável , Canais de Cátion TRPV , Zimosan , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/induzido quimicamente , Canais de Cátion TRPV/metabolismo , Camundongos , Atractylodes/química , Masculino , Extratos Vegetais/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacosRESUMO
Globally, the demand for single-use plastics has increased due to the rising demand for food delivery and household goods. This has led to environmental challenges caused by indiscriminate dumping and disposal. To address this issue, non-degradable plastics are being replaced with biodegradable alternatives. Polylactic acid (PLA) is a type of biodegradable plastic that has excellent mechanical properties. However, its applications are limited due to its low crystallinity and brittleness. Studies have been conducted to combat these limitations using carbon or inorganic nucleating agents. In this study, waste cement and PLA were mixed to investigate the effect of the hybrid inorganic nucleating agent on the crystallinity and mechanical properties of PLA. Waste cement accelerated the lamellar growth of PLA and improved its crystallinity. The results indicate that the flexural and impact strengths increased by approximately 3.63% and 76.18%, respectively.
RESUMO
A certified reference material (CRM, KRISS 108-01-002) for zearalenone in corn flour was developed to assure reliable and accurate measurements in testing laboratories. Commercially available corn flour underwent freeze-drying, pulverization, sieving, and homogenization. The final product was packed in amber bottles, approximately 14 g per unit, and preserved at -70 °C. 13C18-Zearalenone was used as an internal standard (IS) for the certification of zearalenone by isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LCâMS/MS) and for the analysis of α-zearalenol, ß-zearalenol, and zearalanone by LCâMS/MS. The prepared CRM was sufficiently homogeneous, as the among-unit relative standard deviation for each mycotoxin ranged from 2.2 to 5.7 %. Additionally, the stability of the mycotoxins in the CRM was evaluated under different temperature conditions and scheduled test periods, including storage at -70°C, -20°C, and 4°C and room temperature for up to 12 months, 6 months, and 1 month, respectively. The content of each target mycotoxin in the CRM remained stable throughout the monitoring period at each temperature. Zearalenone content (153.6 ± 8.0 µg/kg) was assigned as the certified value. Meanwhile, the contents of α-zearalenol (1.30 ± 0.17 µg/kg), ß-zearalenol (4.75 ± 0.33 µg/kg), and zearalanone (2.09 ± 0.16 µg/kg) were provided as informative values.
Assuntos
Farinha , Padrões de Referência , Espectrometria de Massas em Tandem , Zea mays , Zearalenona , Zearalenona/análise , Zea mays/química , Farinha/análise , Farinha/normas , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Limite de Detecção , Contaminação de Alimentos/análise , Reprodutibilidade dos TestesRESUMO
Atractylodes macrocephala Koidz (AMK) is a traditional herbal medicine used for thousands of years in East Asia to improve a variety of illnesses and conditions, including cancers. This study explored the effect of AMK extract on apoptosis and tumor-grafted mice using AGS human gastric adenocarcinoma cells. We investigated the compounds, target genes, and associated diseases of AMK using the Traditional Chinese Medical Systems Pharmacy (TCMSP) database platform. Cell viability assay, cell cycle and mitochondrial depolarization analysis, caspase activity assay, reactive oxygen species (ROS) assay, and wound healing and spheroid formation assay were used to investigate the anti-cancer effects of AMK extract on AGS cells. Also, in vivo studies were conducted using subcutaneous xenografts. AMK extract reduced the viability of AGS cells and increased the sub-G1 cell fraction and the mitochondrial membrane potential. Also, AMK extract increased the production of ROS. AMK extract induced the increased caspase activities and modulated the mitogen-activated protein kinases (MAPK). In addition, AMK extract effectively inhibited AGS cell migration and led to a notable reduction in the growth of AGS spheroids. Moreover, AMK extract hindered the growth of AGS xenograft tumors in NSG mice. Our results suggest that AMK has anti-cancer effects by promoting cell cycle arrest and inhibiting the proliferation of AGS cancer cells and a xenograft model through apoptosis. This study could provide a novel approach to treat gastric cancer.
Assuntos
Atractylodes , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Espécies Reativas de Oxigênio , Caspases , Extratos Vegetais/farmacologiaRESUMO
This research focuses on the manufacturing of a glass interposer that has gone through glass via (TGV) connection holes. Glass has unique properties that make it suitable for 3D integrated circuit (IC) interposers, which include low permittivity, high transparency, and adjustable thermal expansion coefficient. To date, various studies have suggested numerous techniques to generate holes in glass. In this study, we adopt the selective laser etching (SLE) technique. SLE consists of two processes: local modification via an ultrashort pulsed laser and chemical etching. In our previous study, we found that the process speed can be enhanced by changing the local modification method. For further enhancement in the process speed, in this study, we focus on the chemical etching process. In particular, we try to find a proper etchant for TGV formation. Here, four different etchants (HF, KOH, NaOH, and NH4F) are compared in order to improve the etching speed. For a quantitative comparison, we adopt the concept of selectivity. The results show that NH4F has the highest selectivity; therefore, we can tentatively claim that it is a promising candidate etchant for generating TGV. In addition, we also observe a taper angle variation according to the etchant used. The results show that the taper angle of the hole is dependent on the concentration of the etchant as well as the etchant itself. These results may be applicable to various industrial fields that aim to adjust the taper angle of holes.
RESUMO
The DNA damage response is essential for preserving genome integrity and eliminating damaged cells. Although cellular metabolism plays a central role in cell fate decision between proliferation, survival, or death, the metabolic response to DNA damage remains largely obscure. Here, this work shows that DNA damage induces fatty acid oxidation (FAO), which is required for DNA damage-induced cell death. Mechanistically, FAO induction increases cellular acetyl-CoA levels and promotes N-alpha-acetylation of caspase-2, leading to cell death. Whereas chemotherapy increases FAO related genes through peroxisome proliferator-activated receptor α (PPARα), accelerated hypoxia-inducible factor-1α stabilization by tumor cells in obese mice impedes the upregulation of FAO, which contributes to its chemoresistance. Finally, this work finds that improving FAO by PPARα activation ameliorates obesity-driven chemoresistance and enhances the outcomes of chemotherapy in obese mice. These findings reveal the shift toward FAO induction is an important metabolic response to DNA damage and may provide effective therapeutic strategies for cancer patients with obesity.
Assuntos
Ácidos Graxos , PPAR alfa , Camundongos , Animais , Humanos , Oxirredução , Ácidos Graxos/metabolismo , PPAR alfa/metabolismo , Camundongos Obesos , Resistencia a Medicamentos Antineoplásicos , Obesidade/metabolismo , Morte CelularRESUMO
Using aqueous precursors, we report successfully fabricating thin-solid films of two nucleic acids, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). We investigated the potential of these films deposited on a fiber optic platform as all-fiber integrated saturable absorbers (SAs) for ultrafast nonlinear optics. RNA-SA performances were comparable to those of DNA-SA in terms of its nonlinear transmission, modulation depth, and saturation intensity. Upon insertion of these devices into an Erbium-doped fiber ring-laser cavity, both RNA and DNA SAs enabled efficient passive Q-switching operation. RNA-SA application further facilitated robust mode-locking and generated a transform-limited soliton pulse, exhibiting a pulse duration of 633 femtoseconds. A detailed analysis of these pulsed laser characteristics compared RNA and DNA fiber optic SAs with other nonlinear optic materials. The findings of this research establish the feasibility of utilizing RNA as a saturable absorber in ultrafast laser systems with an equal or higher potential as DNA, which presents novel possibilities for the nonlinear photonic applications of nucleic acid thin solid films.
Assuntos
Ácidos Nucleicos , Filmes Cinematográficos , RNA , Lasers , DNARESUMO
The recent rapid growth of the battery industry has led to a rapid increase in methylene chloride emissions. Methylene chloride causes health and social problems in humans. In this study, cellulose-based activated carbon fibers (CACFs) with improved yield were prepared for the removal of methylene chloride. The concentration of ammonium phosphate in the pretreatment controlled the crosslink density of cellulose fibers and improved the yield. From the results, the specific surface area and total pore volume of cellulose-based activated carbon fibers pretreated with ammonium phosphate (AP-CACFs) were determined to be 1920-2060 m2/g and 0.83-1.02 cm3/g, respectively, and the total yield improved by 6.78-11.59% compared to that of CACFs (4.97%). In particular, a correlation between the textural properties of CACFs and methylene chloride adsorption/desorption behavior was obtained. This correlation can be used to develop efficient adsorbents for methylene chloride removal.
RESUMO
Thiocyanate is an inorganic compound used in industrial applications. Here, we report a case of suicidal death due to acute thiocyanate overdose. A 44-year-old man who consumed an unknown amount of thiocyanate solution was transferred to the emergency room and died 2 h after admission. An autopsy was performed 2 days after death. General toxicological analysis of blood using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry found no drug or alcohol. Quantification using GC-MS post-derivatization with pentafluorobenzyl bromide revealed 2,290 and 1,920 mg/L of thiocyanate in the heart and femoral blood samples, respectively. Thus, the cause of death was attributed to thiocyanate overdose. This study provides useful information for the interpretation of thiocyanate-related fatalities.
Assuntos
Overdose de Drogas , Tiocianatos , Masculino , Humanos , Adulto , Cromatografia Gasosa-Espectrometria de Massas , Overdose de Drogas/diagnóstico , AutopsiaRESUMO
Selective laser etching is a promising candidate for the mass production of glass interposers. It comprises two steps: local modification by an ultrashort-pulsed laser and chemical etching of the modified volume. According to previous studies, when an ultrashort-pulsed laser beam is irradiated on the sample, electron excitation occurs, followed by phonon vibration. In general, the electron excitation occurs for less than a few tens of picoseconds and phonon vibration occurs for more than 100 picoseconds. Thus, in order to compare the electric absorption and thermal absorption of photons in the commercial glass, we attempt to implement an additional laser pulse of 213 ps and 10 ns after the first pulse. The modified glass sample is etched with 8 mol/L KOH solution with 110 °C to verify the effect. Here, we found that the electric absorption of photons is more effective than the thermal absorption of them. We can claim that this result helps to enhance the process speed of TGV generation.
RESUMO
The interfacial adhesion between carbon fibers (CFs) and a thermoplastic matrix is an important aspect that should be improved in manufacturing CF-reinforced thermoplastics with high strength and rigidity. In this study, the effects of a two-step surface treatment comprising electrochemical oxidation and silane treatment of the CF surface on the mechanical properties of CF/maleic anhydride-grafted polypropylene (MAPP) composites were confirmed. The surface characteristics of the treated CFs were analyzed via scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The tensile testing of a single CF and interfacial adhesion of the samples before and after the surface treatment were analyzed using a single-fiber testing machine and a universal testing machine. After the silane treatment, the roughness of the CF surface increased due to the formation of a siloxane network. In addition, the interfacial shear strength increased by â¼450% compared to that of the untreated CFs due to the covalent bond between the -NH2 end group of siloxane and MAPP. This two-step surface treatment, which can be performed continuously, is considered an effective method for improving the mechanical interface strength between the CF and polymer matrix.
RESUMO
Proliferating cells have metabolic dependence on glutamine to fuel anabolic pathways and to refill the mitochondrial carbon pool. The Hippo pathway is essential for coordinating cell survival and growth with nutrient availability, but no molecular connection to glutamine deprivation has been reported. Here, we identify a non-canonical role of YAP, a key effector of the Hippo pathway, in cellular adaptation to perturbation of glutamine metabolism. Whereas YAP is inhibited by nutrient scarcity, enabling cells to restrain proliferation and to maintain energy homeostasis, glutamine shortage induces a rapid YAP dephosphorylation and activation. Upon glutaminolysis inhibition, an increased reactive oxygen species production inhibits LATS kinase via RhoA, leading to YAP dephosphorylation. Activated YAP promotes transcriptional induction of ATF4 to induce the expression of genes involved in amino acid homeostasis, including Sestrin2. We found that YAP-mediated Sestrin2 induction is crucial for cell viability during glutamine deprivation by suppressing mTORC1. Thus, a critical relationship between YAP, ATF4, and mTORC1 is uncovered by our findings. Finally, our data indicate that targeting the Hippo-YAP pathway in combination with glutaminolysis inhibition may provide potential therapeutic approaches to treat tumors.
Assuntos
Fator 4 Ativador da Transcrição , Glutamina , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Sobrevivência Celular , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina , MitocôndriasRESUMO
In this study, the activated carbon was prepared with superior CO2 selective adsorption properties using walnut shells, a biomass waste, as a precursor. The activations were conducted at various times using the microwave heating technique in a steam atmosphere. The surface morphology and chemical composition of activated carbon were analyzed using a scanning electron microscope and energy-dispersive X-ray spectroscopy. The textural properties were investigated using the N2/77K isothermal method, and the structural characteristics were examined using X-ray diffraction analysis. The CO2 and H2 adsorption properties of activated carbon were analyzed using a thermogravimetric analyzer and a high-pressure isothermal adsorption apparatus, respectively, under atmospheric and high-pressure conditions. Depending on the activation time, the specific surface area and total pore volume of the activated carbon were 570-690 m2/g and 0.26-0.34 cm3/g, respectively. The adsorption behaviors of CO2 of the activated carbon were different under atmospheric and high-pressure conditions. At atmospheric pressure, a significant dependence on micropores with diameters less than 0.8 nm was observed, whereas, at high pressure, the micropores and mesopores in the range of 1.6-2.4 nm exhibited a significant dependence. However, H2 adsorption did not occur at relatively low pressures. Consequently, the prepared activated carbon exhibited superior selective adsorption properties for CO2.
RESUMO
Activated carbon fibers (ACFs) are beneficial for adsorbing harmful gases because of the well-developed micropores on their surface. Usually, the physical adsorption of harmful gases by ACFs is limited by their textural properties. In this study, the effect of nickel particle catalyst impregnation on the physicochemical removal of nitric oxide (NO) by polyimide (PI)-based ACFs (PI-ACFs) was investigated. Ni(NO3)2 was used as the precursor of nickel particle catalysts and impregnated on ACFs as a function of concentrations. The Ni(NO3)2/ACFs were then thermally reduced in an argon atmosphere containing 4% hydrogen (400 °C, 1 h). The gases generated during heat treatment were verified using Fourier transform infrared spectroscopy, and the impregnation amount of metallic nickel was also calculated based on the gas amount generated. The specific surface areas of the ACF and Ni-ACFs were determined to be 1010-1180 m2/g, while the nickel impregnation amount was 0.85-5.28 mg/g. The NO removal capacity of the Ni-ACF was found to be enhanced with the addition of Ni catalysts. In addition, metallic nickel particles on the ACFs maintained their chemical molecular structures before and after the NO removal tests.a.
RESUMO
Activated carbon (AC) and activated carbon fibers (ACFs) are materials with a large specific surface area and excellent physical adsorption properties due to their rich porous structure, and they are used as electrode materials to improve the performance of adsorbents or capacitors. Recently, multiple studies have confirmed the applicability of AC/polymer compo-sites in various fields by exploiting the unique physical and chemical properties of AC. As the excellent mechanical properties, stability, antistatic and electromagnetic interference (EMI) shielding functions of activated carbon/polymer composite materials were confirmed in recent studies, it is expected that activated carbon can be utilized as an ideal reinforcing material for low-cost polymer composite materials. Therefore, in this review, we would like to describe the fabrication, characterization and applicability of AC/polymer composites.
RESUMO
DNA repair is a tightly coordinated stress response to DNA damage, which is critical for preserving genome integrity. Accruing evidence suggests that metabolic pathways have been correlated with cellular response to DNA damage. Here, we show that fatty acid oxidation (FAO) is a crucial regulator of DNA double-strand break repair, particularly homologous recombination repair. Mechanistically, FAO contributes to DNA repair by activating poly(ADP-ribose) polymerase 1 (PARP1), an enzyme that detects DNA breaks and promotes DNA repair pathway. Upon DNA damage, FAO facilitates PARP1 acetylation by providing acetyl-CoA, which is required for proper PARP1 activity. Indeed, cells reconstituted with PARP1 acetylation mutants display impaired DNA repair and enhanced sensitivity to DNA damage. Consequently, FAO inhibition reduces PARP1 activity, leading to increased genomic instability and decreased cell viability upon DNA damage. Finally, our data indicate that FAO serves as an important participant of cellular response to DNA damage, supporting DNA repair and genome stability.
Assuntos
Reparo do DNA , DNA , Humanos , Acetilação , DNA/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Ácidos GraxosRESUMO
A novel and flexible approach for the stereo-controlled synthesis of vicinal tertiary carbinols is reported. The developed strategy featured a highly diastereoselective singlet-oxygen (O2 1 ) [4+2] cycloaddition of rationally designed cyclohexadienones (derived from oxidative dearomatization of the corresponding carboxylic-acid appended phenol precursors), followed by programmed "O-O" and "C-C" bond cleavage. In doing so, a highly functionalized and versatile intermediate was identified and prepared in synthetically useful quantity as a plausible precursor to access a variety of designed and naturally occurring vicinal tertiary carbinol containing compounds. Most notably, the developed strategy was successfully applied in the stereo-controlled synthesis of advanced core structures of zaragozic acid, pactamycin and ryanodol.