Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 731, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879692

RESUMO

Ulcerative colitis (UC) is a significant inflammatory bowel disease caused by an abnormal immune response to gut microbes. However, there are still gaps in our understanding of how immune and metabolic changes specifically contribute to this disease. Our research aims to address this gap by examining mouse colons after inducing ulcerative colitis-like symptoms. Employing single-cell RNA-seq and 16 s rRNA amplicon sequencing to analyze distinct cell clusters and microbiomes in the mouse colon at different time points after induction with dextran sodium sulfate. We observe a significant reduction in epithelial populations during acute colitis, indicating tissue damage, with a partial recovery observed in chronic inflammation. Analyses of cell-cell interactions demonstrate shifts in networking patterns among different cell types during disease progression. Notably, macrophage phenotypes exhibit diversity, with a pronounced polarization towards the pro-inflammatory M1 phenotype in chronic conditions, suggesting the role of macrophage heterogeneity in disease severity. Increased expression of Nampt and NOX2 complex subunits in chronic UC macrophages contributes to the inflammatory processes. The chronic UC microbiome exhibits reduced taxonomic diversity compared to healthy conditions and acute UC. The study also highlights the role of T cell differentiation in the context of dysbiosis and its implications in colitis progression, emphasizing the need for targeted interventions to modulate the inflammatory response and immune balance in colitis.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Microbioma Gastrointestinal , Macrófagos , Análise de Célula Única , Animais , Colite Ulcerativa/microbiologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/genética , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/efeitos adversos , Camundongos , RNA-Seq , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Código de Barras de DNA Taxonômico , RNA Ribossômico 16S/genética , Masculino , Análise da Expressão Gênica de Célula Única
2.
Acta Pharmacol Sin ; 45(3): 581-593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040838

RESUMO

The link between chronic inflammation and cancer development is well acknowledged. Inflammatory bowel disease including ulcerative colitis and Crohn's disease frequently promotes colon cancer development. Thus, control of intestinal inflammation is a therapeutic strategy to prevent and manage colitis-associated colorectal cancer (CRC). Recently, gut mucosal damage-associated molecular patterns S100A8 and S100A9, acting via interactions with their pattern recognition receptors (PRRs), especially TLR4 and RAGE, have emerged as key players in the pathogenesis of colonic inflammation. We found elevated serum levels of S100A8 and S100A9 in both colitis and colitis-associated CRC mouse models along with significant increases in their binding with PRR, TLR4, and RAGE. In this study we developed a dual PRR-inhibiting peptide system (rCT-S100A8/A9) that consisted of TLR4- and RAGE-inhibiting motifs derived from S100A8 and S100A9, and conjugated with a CT peptide (TWYKIAFQRNRK) for colon-specific delivery. In human monocyte THP-1 and mouse BMDMs, S100A8/A9-derived peptide comprising TLR4- and RAGE-interacting motif (0.01, 0.1, 1 µM) dose-dependently inhibited the binding of S100 to TLR4 or RAGE, and effectively inhibited NLRP3 inflammasome activation. We demonstrated that rCT-S100A8/A9 had appropriate drug-like properties including in vitro stabilities and PK properties as well as pharmacological activities. In mouse models of DSS-induced acute and chronic colitis, injection of rCT-S100A8/A9 (50 µg·kg-1·d-1, i.p. for certain consecutive days) significantly increased the survival rates and alleviated the pathological injuries of the colon. In AOM/DSS-induced colitis-associated colorectal cancer (CAC) mouse model, injection of rCT-S100A8/A9 (50 µg·kg-1·d-1, i.p.) increased the body weight, decreased tumor burden in the distal colon, and significantly alleviated histological colonic damage. In mice bearing oxaliplatin-resistant CRC xenografts, injection of rCT-S100A8/A9 (20 µg/kg, i.p., every 3 days for 24-30 days) significantly inhibited the tumor growth with reduced EMT-associated markers in tumor tissues. Our results demonstrate that targeting the S100-PRR axis improves colonic inflammation and thus highlight this axis as a potential therapeutic target for colitis and CRC.


Assuntos
Neoplasias Associadas a Colite , Colite , Humanos , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Inflamação/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/metabolismo
3.
Mater Today Bio ; 22: 100745, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37576871

RESUMO

Conventional chemotherapy for colorectal cancer (CRC), though efficacious, is discouraging due to its limited targeting capability, lack of selectivity, and chemotherapy-associated side effects. With the advent of nanomedicines, a liposomal delivery system making use of a combination of anticancer phytochemicals is fast gaining popularity as one of the most promising nanoplatforms for CRC treatment. Rising evidence supports phytochemicals such as platycosides for their anticancer potency. To this end, a combination therapy including tumor-targeted liposomes along with phytochemicals might have a greater therapeutic potential against cancer. In this study, we developed acidity-triggered rational membrane (ATRAM) along with conjugated platycodin D2 (PCD2) and liposomes (PCD2-Lipo-ATRAM) as a tumor-targeting therapy. The PCD2-Lipo-ATRAM treatment demonstrated a successful tumor-targeting ability in the CRC xenografts, in which PCD2 not only exerted a potent antitumor effect by inducing apoptotic cell death and but also functioned as a liposome membrane stabilizer. Moreover, PCD2-Lipo-ATRAM suppressed antiapoptotic BCL-2 family proteins, resulting in enhanced cytotoxicity toward CRC cells by inducing intrinsic caspase-9/-3 mediated apoptosis. Thus, our data has shown that tumor-targeting PCD2-based liposomal systems represent a promising strategy for CRC therapy, since they directly target the tumors, unlike other therapies that can miss the target.

5.
Genes Genomics ; 45(7): 957-967, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133723

RESUMO

BACKGROUND: Single-cell RNA-seq enabled microscopic studies on tissue microenvironment of many diseases. Inflammatory bowel disease, an autoimmune disease, is involved with various dysfunction of immune cells, for which single-cell RNA-seq may provide us a deeper insight into the causes and mechanism of this complex disease. OBJECTIVE: In this work, we used public single-cell RNA-seq data to study tissue microenvironment around ulcerative colitis, an inflammatory bowel disease causing chronic inflammation and ulcers in large intestine. METHODS: Since not all the datasets provide cell-type annotations, we first identified cell identities to select cell populations of our interest. Differentially expressed genes and gene set enrichment analysis was then performed to infer the polarization/activation state of macrophages and T cells. Cell-to-cell interaction analysis was also performed to discover distinct interactions in ulcerative colitis. RESULTS: Differentially expressed genes analysis of the two datasets confirmed the regulation of CTLA4, IL2RA, and CCL5 genes in the T cell subset and regulation of S100A8/A9, CLEC10A genes in macrophages. Cell-to-cell interaction analysis showed CD4+ T cells and macrophages interact actively to each other. We also identified IL-18 pathway activation in inflammatory macrophages, evidence that CD4+ T cells induce Th1 and Th2 differentiation, and also found that macrophages regulate T cell activation through different ligand-receptor pairs, viz. CD86-CTL4, LGALS9-CD47, SIRPA-CD47, and GRN-TNFRSF1B. CONCLUSION: Analysis of these immune cell subsets may suggest novel strategies for the treatment of inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Antígeno CD47/genética , Análise da Expressão Gênica de Célula Única , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Inflamação
6.
Cell Mol Immunol ; 20(2): 189-200, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36600050

RESUMO

CD82 is a transmembrane protein that is involved in cancer suppression and activates immune cells; however, information on the NLRP3 inflammasome is limited. Herein, we show that although CD82 suppressed the activation of the NLRP3 inflammasome in vivo and in vitro, CD82 deficiency decreased the severity of colitis in mice. Furthermore, two binding partners of CD82, NLRP3 and BRCC3, were identified. CD82 binding to these partners increased the degradation of NLRP3 by blocking BRCC3-dependent K63-specific deubiquitination. Previous studies have shown that CD82-specific bacteria in the colon microbiota called Bacteroides vulgatus (B. vulgatus) regulated the expression of CD82 and promoted the activation of the NLRP3 inflammasome. Accordingly, we observed that B. vulgatus administration increased mouse survival by mediating CD82 expression and activating NLRP3 in mice with colitis. Overall, this study showed that CD82 suppression reduced the pathogenesis of colitis by elevating the activation of the NLRP3 inflammasome through BRCC3-dependent K63 deubiquitination. Based on our findings, we propose that B. vulgatus is a novel therapeutic candidate for colitis.


Assuntos
Colite , Inflamassomos , Animais , Camundongos , Colite/metabolismo , Sulfato de Dextrana , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
7.
Biomater Sci ; 11(2): 450-460, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36448995

RESUMO

The level of collagen production critically determines skin wound contraction. If an intelligent skin drug delivery technology that enables collagen production in a specific wound skin area is developed, a breakthrough in wound healing treatment would be expected. However, such an intelligent drug delivery technology has not yet been developed as much as in the field of anticancer therapy. In this study, we propose a smart drug delivery system using polymeric nanovehicles (PNVs), in which the periphery is conjugated with a fibroblast-targeting collagen-derived peptide, KTTKS (Lys-Thr-Thr-Lys-Ser). We showed that surface engineering of PNVs with simultaneous PEGylation and peptide patching improved the dispersibility of PNVs, while promoting selective cellular uptake to fibroblasts via PAR-2 receptor-mediated endocytosis. In vitro collagen production and in vivo wound healing assays revealed that curcumin-loaded fibroblast-targeting PNVs significantly enhanced collagen production and wound healing activities, thus promising effective skin tissue regeneration.


Assuntos
Receptor PAR-2 , Cicatrização , Pele , Colágeno/farmacologia , Fibroblastos , Endocitose
8.
Antioxidants (Basel) ; 11(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36552583

RESUMO

Nicotinamide phosphoribosyl transferase (NAMPT) is required to maintain the NAD+ pool, among which extracellular (e) NAMPT is associated with inflammation, mainly mediated by macrophages. However, the role of (e) NAMPT in inflammatory macrophages in ulcerative colitis is insufficiently understood. Here our analyses of single-cell RNA-seq data revealed that the levels of NAMPT and CYBB/NOX2 in macrophages were elevated in patients with colitis and in mouse models of acute and chronic colitis. These findings indicate the clinical significance of NAMPT and CYBB in colitis. Further, we found that eNAMPT directly binds the extracellular domains of CYBB and TLR4 in activated NLRP3 inflammasomes. Moreover, we developed a recombinant 12-residue TK peptide designated colon-targeted (CT)-conjugated multifunctional NAMPT (rCT-NAMPT), comprising CT as the colon-targeting moiety, which harbors the minimal essential residues required for CYBB/TLR4 binding. rCT-NAMPT effectively suppressed the severity of disease in DSS-induced acute and chronic colitis models through targeting the colon and inhibiting the interaction of NAMPT with CYBB or TLR4. Together, our data show that rCT-NAMPT may serve as an effective novel candidate therapeutic for colitis by modulating the NLRP3 inflammasome-mediated immune signaling system.

9.
Front Immunol ; 13: 862628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572598

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative pathogen of tuberculosis (TB), which manipulates the host immunity to ensure survival and colonization in the host. Mtb possess a unique family of proteins, named PE_PGRS, associated with Mtb pathogenesis. Thus, elucidation of the functions of PE_PGRS proteins is necessary to understand TB pathogenesis. Here, we investigated the role of PE_PGRS38 binding to herpesvirus-associated ubiquitin-specific protease (HAUSP, USP7) in regulating the activity of various substrate proteins by modulating their state of ubiquitination. We constructed the recombinant PE_PGRS38 expressed in M. smegmatis (Ms_PE_PGRS38) to investigate the role of PE_PGRS38. We found that Ms_PE_PGRS38 regulated the cytokine levels in murine bone marrow-derived macrophages by inhibiting the deubiquitination of tumor necrosis factor receptor-associated factor (TRAF) 6 by HAUSP. Furthermore, the PE domain in PE_PGRS38 was identified as essential for mediating TRAF6 deubiquitination. Ms_PE_PGRS38 increased the intracellular burden of bacteria by manipulating cytokine levels in vitro and in vivo. Overall, we revealed that the interplay between HAUSP and PE_PGRS38 regulated the inflammatory response to increase the survival of mycobacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Proteínas de Bactérias , Citocinas/metabolismo , Camundongos , Mycobacterium smegmatis/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
10.
J Med Chem ; 65(1): 386-408, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34982557

RESUMO

The serine protease inhibitor Rv3364c of Mycobacterium tuberculosis (MTB) is highly expressed in cells during MTB exposure. In this study, we showed that the 12WLVSKF17 motif of Rv3364c interacts with the BAR domain of SNX9 and inhibits endosome trafficking to interact with p47phox, thereby suppressing TLR4 inflammatory signaling in macrophages. Derived from the structure of this Rv3364c peptide motif, 2,4-diamino-6-(4-tert-butylphenyl)-1,3,5-trazine, DATPT as a 12WLVSKF17 peptide-mimetic small molecule has been identified. DATPT can block the SNX9-p47phox interaction in the endosome and suppress reactive oxygen species and inflammatory cytokine production; it demonstrated significant therapeutic effects in a mouse model of cecal ligation and puncture-induced sepsis. DATPT has considerably improved potency, with an IC50 500-fold (in vitro) or 2000-fold (in vivo) lower than that of the 12WLVSKF17 peptide. Furthermore, DATPT shows potent antibacterial activities by reduction in ATP production and leakage of intracellular ATP out of bacteria. These results provide evidence for peptide-derived small molecule DATPT with anti-inflammatory and antibacterial functions for the treatment of sepsis.


Assuntos
Antibacterianos/farmacologia , Mycobacterium tuberculosis/química , Sepse/tratamento farmacológico , Bibliotecas de Moléculas Pequenas , Nexinas de Classificação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Antibacterianos/química , Citocinas/antagonistas & inibidores , Endossomos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio , Sepse/microbiologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Nexinas de Classificação/química
11.
Antioxidants (Basel) ; 10(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943057

RESUMO

The run/cysteine-rich-domain-containing Beclin1-interacting autophagy protein (Rubicon) is essential for the regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by interacting with p22phox to trigger the production of reactive oxygen species (ROS) in immune cells. In a previous study, we demonstrated that the interaction of Rubicon with p22phox increases cellular ROS levels. The correlation between Rubicon and mitochondrial ROS (mtROS) is poorly understood. Here, we report that Rubicon interacts with p22phox in the outer mitochondrial membrane in macrophages and patients with human ulcerative colitis. Upon lipopolysaccharide (LPS) activation, the binding of Rubicon to p22phox was elevated, and increased not only cellular ROS levels but also mtROS, with an impairment of mitochondrial complex III and mitochondrial biogenesis in macrophages. Furthermore, increased Rubicon decreases mitochondrial metabolic flux in macrophages. Mito-TIPTP, which is a p22phox inhibitor containing a mitochondrial translocation signal, enhances mitochondrial function by inhibiting the association between Rubicon and p22phox in LPS-primed bone-marrow-derived macrophages (BMDMs) treated with adenosine triphosphate (ATP) or dextran sulfate sodium (DSS). Remarkably, Mito-TIPTP exhibited a therapeutic effect by decreasing mtROS in DSS-induced acute or chronic colitis mouse models. Thus, our findings suggest that Mito-TIPTP is a potential therapeutic agent for colitis by inhibiting the interaction between Rubicon and p22phox to recover mitochondrial function.

12.
Biomedicines ; 9(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068051

RESUMO

Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), avoids the host immune system through its virulence factors. MPT63 and MPT64 are the virulence factors secreted by MTB which regulate host proteins for the survival and proliferation of MTB in the host. Here, we found that MPT63 bound directly with TBK1 and p47phox, whereas MPT64 interacted with TBK1 and HK2. We constructed a MPT63/64-derived multifunctional recombinant protein (rMPT) that was able to interact with TBK1, p47phox, or HK2. rMPT was shown to regulate IFN-ß levels and increase inflammation and concentration of reactive oxygen species (ROS), while targeting macrophages and killing MTB, both in vitro and in vivo. Furthermore, the identification of the role of rMPT against MTB was achieved via vaccination in a mouse model. Taken together, we here present rMPT, which, by regulating important immune signaling systems, can be considered an effective vaccine or therapeutic agent against MTB.

13.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182702

RESUMO

Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9-NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.


Assuntos
Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas de Protozoários/imunologia , Sepse/terapia , Toxoplasma/imunologia , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita/imunologia , Macrófagos/classificação , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Sepse/imunologia , Sepse/prevenção & controle , Toxoplasma/genética , Toxoplasma/patogenicidade
14.
Regul Toxicol Pharmacol ; 104: 84-97, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30797887

RESUMO

This paper is part of a series of 3 publications and describes the non-clinical and clinical assessment performed to fulfill the regulatory requirement per Art. 6 (2) of the EU Tobacco Products Directive 2014/40/EU; under which Member States shall require manufacturers and importers of cigarettes and roll-your-own tobacco containing an additive that is included in the priority list established by Commission Implementing Decision (EU) 2016/787 to carry out comprehensive studies. The Directive requires manufacturers and importers of cigarettes and Roll Your Own tobacco to examine for each additive whether it; contributes to and increases the toxicity or addictiveness of tobacco products to a significant or measurable degree; if it leads to a characterizing flavor of the product; if it facilitates inhalation or nicotine uptake, and if it results in the formation of CMR (carcinogenic, mutagenic and reprotoxic) constituents and if these substances increase the CMR properties of the respective tobacco product to a significant or measurable degree. This publication gives an overview on comprehensive smoke chemistry, in vitro toxicity, and human clinical studies commissioned by the members of the Priority Additives Tobacco Consortium to independent Contract Research Organizations (CROs) where the emissions of test cigarettes containing priority additives were compared to emissions emerging from an additive-free reference cigarette. Whilst minor changes in smoke chemistry parameters were observed when comparing emissions from test cigarettes with emissions from additive-free reference cigarettes, only two of the additives (sorbitol and guar gum) tested led to significant increases in a limited number of smoke constituents. These changes were not observed when sorbitol or guar gum were tested in a mixture with other priority additives. None of the priority additives resulted in increases in in vitro toxicity (Ames, Micronucleus, Neutral Red Uptake) or led to changes in smoking behavior or absorption (rate or amount) of nicotine measured during the human clinical study as compared to the additive-free reference cigarette.


Assuntos
União Europeia , Aromatizantes/normas , Indústria do Tabaco/legislação & jurisprudência , Produtos do Tabaco/normas , Aromatizantes/análise , Humanos , Fumaça/análise , Produtos do Tabaco/análise
15.
Biomed Pharmacother ; 82: 467-71, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27470386

RESUMO

Neroli, the essential oil of Citrus aurantium L. var. amara, is a well-characterized alleviative agent used to treat cardiovascular symptoms. However, because it has been found to have multiple effects, its mechanism of action requires further exploration. We sought to clarify the mechanism underlying the actions of neroli in mouse aorta. In aortic rings from mice precontracted with prostaglandin F2 alpha, neroli induced vasodilation. However, relaxation effect of neroli was decreased in endothelium-denuded ring or pre-incubation with the nitric oxide synthase inhibitor NG-Nitro-l-arginine-methyl ester (L-NAME). And also, neroli-induced relaxation was also partially reversed by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), a soluble guanylyl cyclase (sGC) inhibitor. In addition, neroli inhibited extracellular Ca(2+)-dependent, depolarization-induced contraction, an effect that was concentration dependent. Pretreatment with the non-selective cation channel blocker, Ni(2+), attenuated neroli-induced relaxation, whereas the K(+) channel blocker, tetraethylammonium chloride, had no effect. In the presence of verapamil, added to prevent Ca(2+) influx via smooth muscle voltage-gated Ca(2+) channels, neroli-induced relaxation was reduced by the ryanodine receptor (RyR) inhibitor ruthenium red. Our findings further indicate that the endothelial component of neroli-induced vasodilation is partly mediated by the NO-sGC pathway, whereas the smooth muscle component involves modulation of intracellular Ca(2+) concentration through inhibition of cation channel-mediated extracellular Ca(2+) influx and store-operated Ca(2+) release mediated by the RyR signaling pathway.


Assuntos
Cálcio/metabolismo , Citrus/química , Endotélio Vascular/fisiologia , Músculo Liso Vascular/fisiologia , Óleos Voláteis/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Dinoprosta/farmacologia , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Contração Isométrica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Oxidiazóis/farmacologia , Fenilefrina , Quinoxalinas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-24348719

RESUMO

The purpose of the present study is to examine the effects of essential oil of Citrus bergamia Risso (bergamot, BEO) on intracellular Ca(2+) in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca(2+) concentration [Ca(2+)]i . In the presence of extracellular Ca(2+), BEO increased [Ca(2+)]i , which was partially inhibited by a nonselective Ca(2+) channel blocker La(3+). In Ca(2+)-free extracellular solutions, BEO increased [Ca(2+)]i in a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca(2+). BEO-induced [Ca(2+)]i increase was partially inhibited by a Ca(2+)-induced Ca(2+) release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca(2+) channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased [Ca(2+)]i in the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca(2+) uptake. In addition, store-operated Ca(2+) entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca(2+) from primary intracellular stores via Ca(2+)-induced and IP3-mediated Ca(2+) release and affect promotion of Ca(2+) influx, likely via an SOC mechanism.

17.
Artigo em Inglês | MEDLINE | ID: mdl-23853660

RESUMO

Eucalyptus oil has been reported effective in reducing pain, swelling, and inflammation. This study aimed to investigate the effects of eucalyptus oil inhalation on pain and inflammatory responses after total knee replacement (TKR) surgery. Participants were randomized 1 : 1 to intervention group (eucalyptus inhalation group) or control group (almond oil inhalation group). Patients inhaled eucalyptus or almond oil for 30 min of continuous passive motion (CPM) on 3 consecutive days. Pain on a visual analog scale (VAS), blood pressure, heart rate, C-reactive protein (CRP) concentration, and white blood cell (WBC) count were measured before and after inhalation. Pain VAS on all three days (P < .001) and systolic (P < .05) and diastolic (P = .03) blood pressure on the second day were significantly lower in the group inhaling eucalyptus than that inhaling almond oil. Heart rate, CRP, and WBC, however, did not differ significantly in the two groups. In conclusion, inhalation of eucalyptus oil was effective in decreasing patient's pain and blood pressure following TKR, suggesting that eucalyptus oil inhalation may be a nursing intervention for the relief of pain after TKR.

18.
Sci Total Environ ; 381(1-3): 233-42, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17477955

RESUMO

Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP-->2,3,4,5-tetrachlorophenol-->3,4,5-trichlorophenol-->3,5-dichlorophenol-->3-chlorophenol-->phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore-forming bacteria dechlorinating PCP were not detected by PCR using a specific primer set. These indicated a probable presence of novel anaerobic Gram-positive spore-forming bacteria dechlorinating PCP in the microbial community.


Assuntos
Desulfitobacterium/metabolismo , Pentaclorofenol/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Cloro/metabolismo , Desulfitobacterium/classificação , Desulfitobacterium/isolamento & purificação , Eletroforese , Hibridização in Situ Fluorescente , Fenóis/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Quinonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA