Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dement Neurocogn Disord ; 21(3): 93-102, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35949421

RESUMO

Background and Purpose: The effects of high-intensity interval training (HIIT) interventions on functional brain changes in older adults remain unclear. This preliminary study aimed to explore the effect of physical exercise intervention (PEI), including HIIT, on cognitive function, physical performance, and electroencephalogram patterns in Korean elderly people. Methods: We enrolled six non-dementia participants aged >65 years from a community health center. PEI was conducted at the community health center for 4 weeks, three times/week, and 50 min/day. PEI, including HIIT, involved aerobic exercise, resistance training (muscle strength), flexibility, and balance. Wilcoxon signed rank test was used for data analysis. Results: After the PEI, there was improvement in the 30-second sit-to-stand test result (16.2±7.0 times vs. 24.8±5.5 times, p=0.027), 2-minute stationary march result (98.3±27.2 times vs. 143.7±36.9 times, p=0.027), T-wall response time (104.2±55.8 seconds vs.71.0±19.4 seconds, p=0.028), memory score (89.6±21.6 vs. 111.0±19.1, p=0.028), executive function score (33.3±5.3 vs. 37.0±5.1, p=0.046), and total Literacy Independent Cognitive Assessment score (214.6±30.6 vs. 241.6±22.8, p=0.028). Electroencephalography demonstrated that the beta power in the frontal region was increased, while the theta power in the temporal region was decreased (all p<0.05). Conclusions: Our HIIT PEI program effectively improved cognitive function, physical fitness, and electroencephalographic markers in elderly individuals; thus, it could be beneficial for improving functional brain activity in this population.

2.
J Nanosci Nanotechnol ; 21(7): 3887-3890, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715711

RESUMO

We present a design of a nanoscale inertial measurement unit or a data archive using a graphene-nanoflake (GNF) sandwiched between crossed graphene-nanoribbon (GNR) junctions. When an external force applied is below the retracting force, the inertial force exerted on the movable GNF can telescope it. Then, the self-restoring force increases as the attractive van der Waals force between the GNF and the GNRs, which enables the GNF to automatically and fully retract back into the sandwich position immediately after the externally applied force is released. When the external force exceeds the retracting force, the GNF escapes from the crossed GNR junctions, which enables the device to be used as non-volatile memory. The heterostructure of GNR/h-BN/GNR can be considered as an advanced structure in the proposed scheme.


Assuntos
Grafite , Nanotubos de Carbono , Simulação de Dinâmica Molecular
3.
J Nanosci Nanotechnol ; 21(7): 4073-4076, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715747

RESUMO

Cadmium telluride (CdTe) nanoparticles (NPs) are known for their unique physical and chemical properties. NP synthesis via a size-controlled procedure has become an intriguing research topic because NPs exhibit novel optical and physical properties depending on their size. Their sizes and properties can vary depending on the types and concentrations of stabilizers, which are bound to the surface of the NPs and protect the NPs from aggregation. In this study, we synthesized CdTe NPs stabilized by thioglycolic acid (TGA), 1-thioglycerol (TGC), and L-cysteine (L-C). The ratio of stabilizer to Cd2+ was 1:2.4. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and photoluminescence (PL) were employed for characterization of the NPs. The average sizes of the synthesized NPs were 4.2, 4.1, and 3.7 nm for TGA, TGC, and L-C, respectively. The maximum fluorescent emission peaks of the three NP solutions were at 554.9, 551.6, and 538.3 nm for TGA, TGC, and L-C, respectively. The produced particles were crystalline in structure with a face-centered cubic (fcc) system.


Assuntos
Compostos de Cádmio , Nanopartículas , Pontos Quânticos , Cisteína , Glicerol/análogos & derivados , Telúrio , Tioglicolatos , Difração de Raios X
4.
J Clin Med ; 9(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998321

RESUMO

There is a need for measures that can prevent the onset of dementia in the rapidly aging population. Reportedly, sustained physical exercise can prevent cognitive decline and disability. This study aimed to assess the feasibility of a 12-week physical exercise intervention (PEI) for delay of cognitive decline and disability in the at-risk elderly population in Korea. Twenty-six participants (aged 67.9 ± 3.6 years, 84.6% female) at risk of dementia were assigned to facility-based PEI (n = 15) or home-based PEI (n = 11). The PEI program consisted of muscle strength training, aerobic exercise, balance, and stretching using portable aids. Feasibility was assessed by retention and adherence rates. Physical fitness/cognitive function were compared before and after the PEI. Retention and adherence rates were 86.7% and 88.3%, respectively, for facility-based PEI and 81.8% and 62.3% for home-based PEI. No intervention-related adverse events were reported. Leg strength/endurance and cardiopulmonary endurance were improved in both groups: 30 s sit-to-stand test (facility-based, p = 0.002; home-based, p = 0.002) and 2 -min stationary march (facility-based, p = 0.001; home-based, p = 0.022). Cognitive function was improved only after facility-based PEI (Alzheimer's Disease Assessment Scale-cognitive total score, p = 0.009; story memory test on Literacy Independent Cognitive Assessment, p = 0.026). We found that, whereas our PEI is feasible, the home-based program needs supplementation to improve adherence.

5.
J Nanosci Nanotechnol ; 20(9): 5570-5574, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331136

RESUMO

Superlubric motions of graphene nanoflakes (GNFs) on graphene have opened up more applications of graphene for micromachines and nanomachines. Here, we investigate the dynamic behavior of a GNF shuttle on a graphene nanoribbon (GNR) with carbon nanotube (CNT) blocks via molecular dynamics simulations. The GNF moves on a GNR superlubrically, and the CNTs as building blocks induce bistable potential wells so that the GNF is stabilized. MD simulation results indicate that when a GNF shuttle approaches the CNTs, a potential well is created by an increase in the attractive van der Waals energy between the GNF and CNTs, and bistability at the local energy minima positions can be achieved near the CNTs. In order for the GNF shuttle to escape the local energy minima positions, a high external force must be applied to overcome the potential energy barrier. However, after the GNF shuttle escapes from one of the bistable positions, only a low external force is required to stabilize the GNF shuttle. This work explicitly demonstrates that a GNF-GNR/CNT system could be applied to alternative nonvolatile memory and high-speed mass storage by using GNR-CNT arrays.

6.
J Nanosci Nanotechnol ; 16(2): 1596-602, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433628

RESUMO

Superlubricity in nanoscale graphene structures has been of interest for developing graphene-based nanoelectromechanical systems, as well as for the study of basic mechanical properties. Here, we investigated the translational and rotational motions of a square graphene nanoflake with retracting motions by performing classical molecular dynamics simulations. Our results show that the kinetic energy of the translational motion was exchanged into the kinetic energy of the rotational motion. Thus, square graphene nanoflake oscillators have very low quality factors in translational motions. We discuss that square graphene nanoflakes have great potential to be a core component in nanoelectromechanical systems by detecting their motions with ultrahigh sensitivity to facilitate the development of sensor, memory, and quantum computing.

7.
J Nanosci Nanotechnol ; 15(7): 4908-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373055

RESUMO

We have investigated the motion of a C60 molecule absorbed on sinusoidal graphene nanoflake (GNF) via molecular dynamics simulations. Since C60 deposited on sinusoidal GNF is favorable on energetic grounds, the C60 molecule moved toward one of the valleys of sinusoidal GNF without energy barrier. So no sooner the C60 molecule was deposited on the sinusoidal GNF, then the C60 molecule immediately began to move toward the valley of the sinusoidal GNF Since the position of the C60 molecule can be changed by externally applied force fields and has a binding energy of 0.754 eV in the valley of sinusoidal GNF, the sinusoidal C60/GNF can be applied to a switchable nonvolatile memory device. This work provides the probability of alternative 'bucky shuttle' memory based on the sinusoidal C60/GNF hybrid nanostructure.

8.
J Nanosci Nanotechnol ; 15(7): 5346-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373139

RESUMO

CdTe nanowires were synthesized from individual nanoparticles via self-assembly at a specific wavelength of light. The wavelength of 500 nm resulted in a self-assembly of nanoparticles into nanowires. Most of the produced nanowires were straight and long in shape and their length ranged from 300 nm to 20 µm. The oxidation of Te2- in CdTe nanoparticles under the visible light resulted in the assembly of nanowires consisting of several layers of individual nanoparticles. Transmission electron microscopy and scanning electron microscopy were performed to characterize the synthesized nanostructures. Energy-dispersive X-ray demonstrated the atomic percentage of nanowires. Photoluminescence showed that the wavelength of the nanostructures is slightly blue-shifted from 555 to 548 nm.

9.
J Nanosci Nanotechnol ; 15(1): 672-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328424

RESUMO

Cadmium telluride (CdTe) nanowires were successfully synthesized from individual nanoparticles and the evolutionary process was investigated. Slow oxidation of Te(2-) in CdTe nanoparticles resulted in the generation of ribbons consisting of several layers of individual nanocrystals. The length of nanowires ranged from 1 to 8 µm. The presence of unusual shapes of multiparticle assemblies, such as bouquet, dog-bone, and ribbon bunches was observed as intermediate stages. The images of nanoribbons were analysed based on transmission electron microscopy and scanning electron microscopy. The suggested synthetic procedure provides a viable pathway for the fabrication of nanomaterials with helical conformations.

10.
J Nanosci Nanotechnol ; 15(10): 8275-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726502

RESUMO

Thiol-capped cadmium telluride (CdTe) nanoparticles (NPs) self-assembled into nanowires (NWs) under dark conditions, and the evolutionary process was investigated. Thiolglycolic acid (TGA) was selected as one of the stabilizers and a TGA-to-Cd ion ratio of 1.3 rather than the traditional 2.4 ratio was used. The reduced amount of the stabilizer and the oxidation of tellurium ions on CdTe NP surface under dark conditions resulted in reorganization from individual NPs into NWs consisting of multi-layers of individual NPs. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were performed to characterize the synthesized nanostructures. The NWs produced were straight and long, with lengths ranging from 500 nm to 10 µm. Photoluminescence (PL) showed that the nanostructure wavelengths were slightly blue-shifted from 546 to 539 nm. Both control of the amount of stabilizer and oxidation of Te ions acted as driving forces to form NWs. Thus, small modifications in synthesis yielded a major difference in the final nanomaterial structure. The suggested synthetic procedure provides a viable pathway for the fabrication of nanomaterials.

11.
J Nanosci Nanotechnol ; 15(11): 9025-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726636

RESUMO

Partially side-opened carbon nanopeapods show great potential for various applications. Here, we investigated the schematics and energetics of a nonvolatile nanomemory element, based on a C60 fullerene encapsulated in a partially opened carbon nanopeapod, using empirical interatomic interaction potential functions. Bistability of the van der Waals potential energy is achieved from the positional change of the encapsulated C60 fullerene, and the encapsulated C60 fullerene can shuttle between bistable positions, under alternatively applied force fields. Since the C60 fullerene can retain its position without recharging, the proposed system can operate as a nonvolatile memory device. These results can be useful for the understanding of new molecular machines.

12.
J Nanosci Nanotechnol ; 14(11): 8863-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958618

RESUMO

Cadmium telluride (CdTe) nanowires were successfully synthesized from individual nanoparticles via self-assembly, and the evolutionary process was investigated. The oxidation of tellurium ions in CdTe nanoparticles under dark conditions led to the assembly of straight nanowires made of several layers of individual nanoparticles. Transmission electron microscopy and scanning electron microscopy were performed to characterize the synthesized nanostructures. The length of the NWs assembled from CdTe NPs ranged from 0.5 to 30 µm. Unlike generally prepared NWs, these NWs were made from individual NPs layered on top of each other. Remarkably, the assembly of individual NPs formed bundles during the intermediate steps before they unraveled into individual NWs. Both control of the amount of stabilizer and oxidation of Te ions acted as driving forces to form NWs. Thus, small modifications in synthesis yielded a major difference in the final nanomaterial structure. The suggested synthetic procedure provides a viable pathway for the fabrication of nanomaterials.

13.
J Nanosci Nanotechnol ; 12(5): 4224-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852378

RESUMO

In this paper, we investigated the resonant frequencies of multi-walled carbon nanotube (MWCNT) resonators with short outertubes according to the classical molecular dynamics approach. The resonant frequencies of the MWCNT resonators with short outertubes were influenced in both the wall number and the length of the short outertubes. The resonance frequencies of MWCNTs with short outertubes could be modeled by Gaussian distribution functions. Both the bandwidth and the sensitivity increased with increasing the wall number of the outertubes. The maximum frequency increased with increasing the diameter and with increasing the wall number of the outertubes for MWCNTs. So the effects of increasing the wall number of the outertubes were very important factors for understanding the vibrational frequency changes of MWCNTs with short outertubes as well as the effect of increasing the lengths of the outertubes.

14.
J Nanosci Nanotechnol ; 12(5): 4309-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852396

RESUMO

CdTe nanorribons were successfully synthesized from individual nanoparticle. Slow oxidation of Te(2-) in CdTe nanoparticles resulted in the assembly of ribbons consisting of several layers of individual nanocrystals. The light-controlled self-assembly of CdTe nanoparticles led to twisted ribbons with variable pitch. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were performed to characterize the synthesized nanostructures. The suggested synthetic procedure provides a viable pathway for the fabrication of nanomaterials with helical conformations.

15.
J Nanosci Nanotechnol ; 12(4): 3641-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849186

RESUMO

We have successfully synthesized ionic liquid (IL)-stabilized palladium (Pd) nanoparticles (NPs) by electrochemical reduction. The particle size was controlled by adjusting the current density. Transmission electron microscopic (TEM) images showed that the average diameters of the Pd NPs were 2.4, 3.2, and 3.5 nm, depending on the synthetic conditions. Particle size increased as the current density and the length of the alkyl chain in the cation decreased. X-ray diffraction of the resulting NPs indicated that the particles had a crystalline structure. Overall, the results show that NPs can be finely tuned according to the kinds of ILs employed, as well as by electrochemical reduction.

16.
J Nanosci Nanotechnol ; 11(7): 5856-60, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121620

RESUMO

We investigate the nano mass transfer in an ultrahigh frequency carbon-nanotube-resonator encapsulating a nanocluster via classical molecular dynamics simulations. When the carbon-nanotube-resonator vibrated, the encapsulated copper nanocluster more rapidly approached the end of the cantilevered carbon-nanotube-resonator. Such phenomena were due to the migration of the encapsulated copper nanocluster due to the centrifugal force induced by the vibrating nanotube resonator. So the resonance frequency change could be time-dependently found. For the movable copper nanocluster in carbon nanotube resonator, the vibrational spectra when the copper nanocluster inside the carbon nanotube resonator rapidly settled at the capped edge were different from those obtained when the copper nanocluster continuously oscillated inside the carbon nanotube resonator. Such results showed that the frequency of the carbon-nanotube-resonator encapsulating the movable copper nanocluster could be adjusted by controlling the mean position of the oscillating copper nanocluster. The movable nanocluster inside a carbon-nanotube can be applied to a nanotube-based data storage media by sensing the position of the nanocluster.

17.
J Nanosci Nanotechnol ; 11(7): 6359-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121715

RESUMO

We conceptually investigated a carbon-nanotube-based tuner operated by the telescoping nanotube motion in a multi-walled carbon-nanotube induced by electromigration of an encapsulated nanoparticle. The telescoping lengths in the proposed carbon-nanotube-based tuner could be achieved from the electromigration phenomena of the nanoparticle embedded in the carbon nanotube. So the core part is the nanoparticle shuttle and a multi-walled carbon-nanotube with ultra-low interlayer friction. The tuning of this telescoping carbon-nanotube-based tuner is achieved from the electric current flow. The properties of operation were investigated via classical molecular dynamics simulations and then the parameters of the continuum model were then calibrated to fit the results of the molecular dynamics simulations. Since the effective boundary considered as the movable clamp affected the vibration of the telescoping nanotube, the calibrated Young's modulus of this work were lower than the those of the previous works. Presented tuners are controllable in a few nanometers, and their operations are robust and reliable.

18.
Chem Commun (Camb) ; 47(22): 6341-3, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21547283

RESUMO

Pyrrolidinium cation-based ionic liquids were synthesized, and their inhibition effects on methane hydrate formation were investigated. It was found that the ionic liquids shifted the hydrate equilibrium line to a lower temperature at a specific pressure, while simultaneously delaying gas hydrate formation.

19.
J Nanosci Nanotechnol ; 11(2): 1573-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456239

RESUMO

We investigated a linear nanomotor based on the telescoping carbon nanotube motion induced by electromigration of an encapsulated nanoparticle. The nanoparticle motion induced by the electric current makes the inner nanotube linearly telescope or retreat. Theoretical results using a kinetic Monte Carlo method were in good agreement with previous experiments. The telescoping speed of the linear nanomotor exponentially decreased with increasing mass of the inner nanotube.

20.
J Nanosci Nanotechnol ; 11(1): 716-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446530

RESUMO

Metal nanoparticles were successfully synthesized from the self-regulated reduction of hydroxylated ionic liquids in aqueous phase without additives. A new water-phase synthesis of gold and palladium nanoparticles using N-(2-hydroxyethyl)-N-methylmorpholinium tetrafluoroborate is described. Transmission electron microscopy was performed to characterize the metal nanoparticles. The average sizes of the gold and palladium nanoparticles were 4.3 nm and 3.2 nm, respectively. Hydroxylated ionic liquids served as both reductants and protective agents, significantly simplifying the preparation of nanoparticles. The produced particles were highly crystalline in structure with a face-centered cubic (fcc) lattice. Finally, we showed preliminary results that suggest different hydroxylated ionic liquids can also be used to prepare various metal nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA