Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32587953

RESUMO

High levels of cholesterol, especially as low-density lipoprotein (LDL), are a well-known risk factor for atherosclerotic-related diseases. The key atherogenic property of LDL is its ability to form atherosclerotic plaque. Proprotein convertase subtilisin/kexin-9 (PCSK9) is an indirect regulator of plasma LDL levels by controlling the number of LDL receptor molecules expressed at the plasma membrane, especially in the liver. Herein, we performed a combination of affinity chromatography, mass spectrometry analysis and identification, and gene expression studies to identify proteins that interact with PCSK9. Through these studies, we identified three proteins, alpha-1-antitrypsin (A1AT), alpha-1-microglobulin/bikunin precursor (AMBP), and apolipoprotein H (APOH) expressed by C3A cells that interact with PCSK9. The expression levels of A1AT and APOH increased in cells treated with MITO+ medium, a condition previously shown to affect the function of PCSK9, as compared to treating with Regular (control) medium. However, AMBP expression did not change in response to the treatments. Additional studies are required to determine which of these proteins can modulate the expression/function of PCSK9. The identification of endogenous modulators of PCSK9's function could lead to the development of novel diagnostic tests or treatment options for patients suffering hypercholesterolemia in combination with other chronic metabolic diseases.

2.
Tree Physiol ; 39(7): 1136-1148, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31070767

RESUMO

Trees use many mechanisms to adapt and respond to stressful conditions. The phenylpropanoid pathway in particular is known to be associated with a diverse suite of plant stress responses. In this study, we explored the relationship between the phenylpropanoid pathway metabolite production, gene expression and adaptive trait variation associated with floral bud reactivation during and following dormancy in Prunus armeniaca L. (apricot). Concentrations of eight phenylpropanoid metabolites were measured during chill accumulation and at developmental stages corresponding to the emergence of sepals and petals in floral buds of varieties that differ phenotypically in bloom date (BD). A significant interaction effect of chill hours and BD phenotype on the concentration of each of the compounds was observed (mixed analysis of variance, P < 0.05), with the concentration of most phenylpropanoid metabolites dropping precipitously when sepals and petals emerged. While phenylpropanoid biosynthetic gene expression patterns were more variable in general, expression changed over time and was impacted, although to a lesser degree, by BD phenotype. Furthermore, separation of BD phenotypic groups was most pronounced when early and late BD varieties were at different developmental stages, i.e., 800 chill hours. Taken together, these results suggest that the phenylpropanoid pathway is associated with floral bud reactivation in apricot. Furthermore, we show that the phenylpropanoid pathway is also impacted by phenological trait variation associated with dormancy. A better understanding of how apricot and other perennial tree species respond and adapt to environmental perturbations will be critical for improvement programs aimed at identifying and breeding trees more suitable for rapidly changing environments.


Assuntos
Prunus armeniaca , Flores , Fenótipo
3.
Nat Commun ; 9(1): 4149, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297838

RESUMO

Ceramides are important participants of signal transduction, regulating fundamental cellular processes. Here we report the mechanism for activation of p53 tumor suppressor by C16-ceramide. C16-ceramide tightly binds within the p53 DNA-binding domain (Kd ~ 60 nM), in close vicinity to the Box V motif. This interaction is highly selective toward the ceramide acyl chain length with its C10 atom being proximal to Ser240 and Ser241. Ceramide binding stabilizes p53 and disrupts its complex with E3 ligase MDM2 leading to the p53 accumulation, nuclear translocation and activation of the downstream targets. This mechanism of p53 activation is fundamentally different from the canonical p53 regulation through protein-protein interactions or posttranslational modifications. The discovered mechanism is triggered by serum or folate deprivation implicating it in the cellular response to nutrient/metabolic stress. Our study establishes C16-ceramide as a natural small molecule activating p53 through the direct binding.


Assuntos
Núcleo Celular/metabolismo , Ceramidas/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Transporte Ativo do Núcleo Celular , Ceramidas/química , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Ligantes , Células PC-3 , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
PLoS One ; 12(5): e0176182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542610

RESUMO

GPR40 (FFA1) is a fatty acid receptor whose activation results in potent glucose lowering and insulinotropic effects in vivo. Several reports illustrate that GPR40 agonists exert glucose lowering in diabetic humans. To assess the mechanisms by which GPR40 partial agonists improve glucose homeostasis, we evaluated the effects of MK-2305, a potent and selective partial GPR40 agonist, in diabetic Goto Kakizaki rats. MK-2305 decreased fasting glucose after acute and chronic treatment. MK-2305-mediated changes in glucose were coupled with increases in plasma insulin during hyperglycemia and glucose challenges but not during fasting, when glucose was normalized. To determine the mechanism(s) mediating these changes in glucose metabolism, we measured the absolute contribution of precursors to glucose production in the presence or absence of MK-2305. MK-2305 treatment resulted in decreased endogenous glucose production (EGP) driven primarily through changes in gluconeogenesis from substrates entering at the TCA cycle. The decrease in EGP was not likely due to a direct effect on the liver, as isolated perfused liver studies showed no effect of MK-2305 ex vivo and GPR40 is not expressed in the liver. Taken together, our results suggest MK-2305 treatment increases glucose stimulated insulin secretion (GSIS), resulting in changes to hepatic substrate handling that improve glucose homeostasis in the diabetic state. Importantly, these data extend our understanding of the underlying mechanisms by which GPR40 partial agonists reduce hyperglycemia.


Assuntos
Benzopiranos/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Tiazolidinedionas/farmacologia , Animais , Benzopiranos/química , Glicemia/metabolismo , Células CHO , Cricetulus , Diabetes Mellitus Experimental/metabolismo , Avaliação Pré-Clínica de Medicamentos , Jejum/sangue , Células HEK293 , Humanos , Hipoglicemiantes/química , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Knockout , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tiazolidinedionas/química , Fatores de Tempo , Técnicas de Cultura de Tecidos
5.
Brain Behav Immun ; 56: 246-52, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27018002

RESUMO

This study utilized a pro-inflammatory exercise mode to explore potential linkages between increases in 9- and 13-hydroxy-octadecadienoic acid (9+13 HODE) and biomarkers for inflammation, oxidative stress, and muscle damage. Male (N=10) and female (N=10) runners ran at ∼70% VO2max for 1.5h followed by 30min of downhill running (-10%). Blood samples were taken pre-run and immediately-, 1-h-, and 24-h post-run, and analyzed for 9+13 HODE, F2-isoprostanes, six cytokines, C-reactive protein (CRP), creatine kinase (CK), and myoglobin (MYO). Gender groups performed at comparable relative heart rate and oxygen consumption levels during the 2-h run. All outcome measures increased post-run (time effects, P⩽0.001), with levels near pre-run levels by 24h except for CRP, CK, MYO, and delayed onset of muscle soreness (DOMS). Plasma 9+13 HODE increased 314±38.4% post-run (P<0.001), 77.3±15.8% 1-h post-run (P<0.001), and 40.6±16.4% 24-h post-exercise (P=0.024), and F2-isoprostanes increased 50.8±8.9% post-run (P<0.001) and 19.0±5.3% 1-h post-run (P=0.006). Post-run increases were comparable between genders for all outcomes except for 9+13 HODE (interaction effect, P=0.024, post-run tending higher in females), IL-10 (P=0.006, females lower), and DOMS (P=0.029, females lower). The pre-to-post-run increase in 9+13 HODEs was not related to other outcomes except for plasma granulocyte colony stimulating factor (GCSF) (r=-0.710, P<0.001) and IL-6 (r=-0.457, P=0.043). Within the context of this study, exercise-induced increases in 9+13 HODEs tended higher in females, and were not related to increases in F2-isoprostanes, muscle damage, or soreness. The negative relationships to GCSF and IL-6 suggest a linkage between 9+13 HODES and exercise-induced neutrophil chemotaxis, degranulation, and inflammation.


Assuntos
Proteína C-Reativa/metabolismo , Creatina Quinase/sangue , Citocinas/sangue , Fator Estimulador de Colônias de Granulócitos/sangue , Inflamação/sangue , Interleucina-6/sangue , Ácidos Linoleicos Conjugados/sangue , Ácidos Linoleicos/sangue , Mialgia/sangue , Mioglobina/sangue , Estresse Oxidativo/fisiologia , Corrida/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Proteome Res ; 14(4): 1810-7, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25735966

RESUMO

We compared the performance of gas chromatography time-of-flight mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) for metabolite biomarker discovery. Metabolite extracts from 109 human serum samples were analyzed on both platforms with a pooled serum sample analyzed after every 9 biological samples for the purpose of quality control (QC). The experimental data derived from the pooled QC samples showed that the GC×GC-MS platform detected about three times as many peaks as the GC-MS platform at a signal-to-noise ratio SNR ≥ 50, and three times the number of metabolites were identified by mass spectrum matching with a spectral similarity score Rsim ≥ 600. Twenty-three metabolites had statistically significant abundance changes between the patient samples and the control samples in the GC-MS data set while 34 metabolites in the GC×GC-MS data set showed statistically significant differences. Among these two groups of metabolite biomarkers, nine metabolites were detected in both the GC-MS and GC×GC-MS data sets with the same direction and similar magnitude of abundance changes between the control and patient sample groups. Manual verification indicated that the difference in the number of the biomarkers discovered using these two platforms was mainly due to the limited resolution of chromatographic peaks by the GC-MS platform, which can result in severe peak overlap making subsequent spectrum deconvolution for metabolite identification and quantification difficult.


Assuntos
Biomarcadores/análise , Cromatografia Gasosa/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Soro/química , Humanos , Razão Sinal-Ruído
7.
Planta Med ; 80(8-9): 732-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24963620

RESUMO

A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Extratos Vegetais/isolamento & purificação , Vaccinium/química , Ácido Clorogênico/normas , Extratos Vegetais/química , Folhas de Planta/química , Análise de Componente Principal , Padrões de Referência , Especificidade da Espécie , Vaccinium/classificação
8.
Carbohydr Res ; 346(17): 2752-9, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22030461

RESUMO

The Candida albicans cell wall provides an architecture that allows for the organism to survive environmental stress as well as interaction with host tissues. Previous work has focused on growing C. albicans on media such as Sabouraud or YPD at 30°C. Because C. albicans normally colonizes a host, we hypothesized that cultivation on blood or serum at 37°C would result in structural changes in cell wall mannan. C. albicans SC5314 was inoculated onto YPD, 5% blood, or 5% serum agar media three successive times at 30°C and 37°C, then cultivated overnight at 30°C in YPD. The mannan was extracted and characterized using 1D and 2D (1)H NMR techniques. At 30°C cells grown in blood and serum contain less acid-stable terminal ß-(1→2)-linked d-mannose and α-(1→2)-linked d-mannose-containing side chains, while the acid-labile side chains of mannan grown in blood and serum contain fewer ß-Man-(1→2)-α-Man-(1→ side chains. The decrement in acid-stable mannan side chains is greater at 37°C than at 30°C. Cells grown on blood at 37°C show fewer →6)-α-Man-(1→ structural motifs in the acid-stable polymer backbone. The data indicate that C. albicans, grown on media containing host-derived components, produces less complex mannan. This is accentuated when the cells are cultured at 37°C. This study demonstrates that the C. albicans cell wall is a dynamic and adaptive organelle, which alters its structural phenotype in response to growth in host-derived media at physiological temperature.


Assuntos
Candida albicans/metabolismo , Parede Celular/metabolismo , Mananas/metabolismo , Animais , Sangue , Candida albicans/crescimento & desenvolvimento , Configuração de Carboidratos , Sequência de Carboidratos , Parede Celular/química , Meios de Cultura , Espectroscopia de Ressonância Magnética , Mananas/química , Dados de Sequência Molecular , Fenótipo , Ovinos , Temperatura
9.
Langmuir ; 22(26): 11077-84, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154587

RESUMO

In this study, FTIR spectroscopy and solid-state magic angle spinning (MAS) NMR were used to investigate the adsorption and thermal reaction of the nerve gas simulant dimethyl methylphosphonate (DMMP) in nanocrystalline NaY with a crystal size of approximately 30 nm. DMMP adsorbs molecularly in nanocrystalline NaY at 25 degrees C. Gas-phase products of the reaction of DMMP and oxygen in nanocrystalline NaY at 200 degrees C were monitored by FTIR spectroscopy and determined to be carbon dioxide (major product), formaldehyde, and dimethyl ether. In the presence of water, the thermal reaction of DMMP in nanocrystalline NaY at 200 degrees C yielded methanol (major product), carbon dioxide, and dimethyl ether. When the thermal reaction of DMMP in nanocrystalline NaY at 200 degrees C was conducted in the presence of water and oxygen, the predominant products were methanol and carbon dioxide. Hydroxyl sites located on the external zeolite surface were consumed during the DMMP thermal reactions as monitored by FTIR spectroscopy and were therefore determined to be the active sites in this reaction. 31P solid-state MAS NMR experiments were used to identify the surface-bound phosphorus complexes. The reactivity per gram of zeolite was comparable to other recently studied metal oxides such as MgO, Al2O3, and TiO2, and was found to have comparable, if not higher reactivity. Future improvements in reactivity may be achieved by incorporating a reactive transition metal ion or metal oxide nanocluster into the nanocrystalline NaY to enhance reaction rates and to achieve complete reaction of DMMP.

10.
Solid State Nucl Magn Reson ; 29(1-3): 85-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16257190

RESUMO

The porosity in porous silicon was characterized using hyperpolarized (HP) xenon as a probe. HP xenon under conditions of continuous flow allows for the rapid acquisition of xenon NMR spectra that can be used to characterize a variety of materials. Two-dimensional exchange spectroscopy (EXSY) (129)Xe NMR experiments using HP xenon were performed to obtain exchange pathways and rates of xenon mobility between pores of different dimensions within the structure of porous silicon and to the gas phase above the sample. Pore sizes are estimated from chemical shift information and a model for pore geometry is presented.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Silício/análise , Silício/química , Isótopos de Xenônio/análise , Isótopos de Xenônio/química , Isótopos/análise , Isótopos/química , Teste de Materiais/métodos , Técnicas de Sonda Molecular , Porosidade , Propriedades de Superfície
11.
J Phys Chem B ; 109(10): 4533-8, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851529

RESUMO

The substrate and field dependencies of surface SPINOE enhancements using optical pumping and magic angle spinning NMR were monitored. Relaxation rates and enhancements were examined to gain an understanding of the parameters that determine the SPINOE enhancement. (13)C-labeled deuterated methanol was adsorbed on three different substrates (SnO(2), TiO(2), Ti/SiO(2)) with heats of adsorption for xenon ranging from 14.2 to 22.6 kJ/mol. The different heats of adsorption led to a range of xenon coverages and xenon relaxation rates. Using a simple model along with experimental values for the xenon surface polarization and cross- and self-relaxation rates, the (13)C signal enhancement could be predicted and compared with experimental enhancement values. Magnetic field dependence studies were also made by monitoring the (13)C enhancements via SPINOE from hyperpolarized xenon at fields of 0.075, 4.7, and 9.4 T. The pertinent parameters necessary to achieve maximum SPINOE enhancement are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA