Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 292, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001420

RESUMO

BACKGROUND: Despite intensive developments of adoptive T cell and NK cell therapies, the efficacy against solid tumors remains elusive. Our study demonstrates that macrophage-based cell therapy could be a potent therapeutic option against solid tumors. METHODS: To this end, we determine the effect of a natural triterpene glycoside, cucumarioside A2-2 (CA2-2), on the polarization of mouse macrophages into the M1 phenotype, and explore the antitumor activity of the polarized macrophage. The polarization of CA2-2-pretreated macrophages was analyzed by flow cytometry and confocal imaging. The anti-cancer activity of CA2-2 macrophages was evaluated against 4T1 breast cancer cells and EAC cells in vitro and syngeneic mouse model in vivo. RESULTS: Incubation of murine macrophages with CA2-2 led to polarization into the M1 phenotype, and the CA2-2-pretreated macrophages could selectively target and kill various types of cancer in vitro. Notably, loading near-infrared (NIR) fluorochrome-labeled nanoparticles, MnMEIO-mPEG-CyTE777, into macrophages substantiated that M1 macrophages can target and penetrate tumor tissues in vivo efficiently. CONCLUSION: In this study, CA2-2-polarized M1 macrophages significantly attenuated tumor growth and prolonged mice survival in the syngeneic mouse models. Therefore, ex vivo CA2-2 activation of mouse macrophages can serve as a useful model for subsequent antitumor cellular immunotherapy developments.

2.
Sci Rep ; 8(1): 16759, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425281

RESUMO

Silicateins play a key role in biosynthesis of spicules in marine sponges; they are also capable to catalyze formation of amorphous silica in vitro. Silicateins are highly homologous to cathepsins L - a family of cysteine proteases. Molecular mechanisms of silicatein activity remain controversial. Here site-directed mutagenesis was used to clarify significance of selected residues in silica polymerization. A number of mutations were introduced into two sponge proteins - silicatein A1 and cathepsin L from Latrunculia oparinae, as well as into human cathepsin L. First direction was alanine scanning of the proposed catalytic residues. Also, reciprocal mutations were introduced at selected positions that differ between cathepsins L and silicateins. Surprisingly, all the wild type and mutant proteins were capable to catalyze amorphous silica formation with a water-soluble silica precursor tetra(glycerol)orthosilicate. Some mutants possessed several-fold enhanced silica-forming activity and can potentially be useful for nanomaterial synthesis applications. Our findings contradict to the previously suggested mechanisms of silicatein action via a catalytic triad analogous to that in cathepsins L. Instead, a surface-templated biosilification by silicateins and related proteins can be proposed.


Assuntos
Catepsina L/metabolismo , Catepsinas/metabolismo , Glicerol/química , Glicerol/metabolismo , Silicatos/química , Dióxido de Silício/metabolismo , Sequência de Aminoácidos , Animais , Catepsina L/química , Catepsina L/genética , Catepsinas/química , Catepsinas/genética , Humanos , Mutagênese Sítio-Dirigida , Mutação , Polimerização , Poríferos/genética , Dióxido de Silício/química
3.
Biochem Biophys Res Commun ; 495(2): 2066-2070, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29253563

RESUMO

Silicateins, the spicule-forming proteins from marine demosponges capable to polymerize silica, are popular objects of biomineralization studies due to their ability to form particles varied in shape and composition under physiological conditions. Despite the occurrence of the many approaches to nanomaterial synthesis using silicateins, biochemical properties of this protein family are poorly characterized. The main reason for this is that tetraethyl orthosilicate (TEOS), the commonly used silica acid precursor, is almost insoluble in water and thus is poorly available for the protein. To solve this problem, we synthesized new water-soluble silica precursor, tetra(glycerol)orthosilicate (TGS), and characterized biochemical properties of the silicatein A1 from marine sponge Latrunculia oparinae. Compared to TEOS, TGS ensured much greater activity of silicatein and was less toxic for the mammalian cell culture. We evaluated optimum conditions for the enzyme - pH range, temperature and TGS concentration. We concluded that TGS is a useful silica acid precursor that can be used for silica particles synthesis and in vivo applications.


Assuntos
Materiais Biomiméticos/síntese química , Catepsinas/química , Polímeros/síntese química , Poríferos/química , Dióxido de Silício/síntese química , Água/química , Animais , Teste de Materiais , Solubilidade
4.
Sci Rep ; 6: 39683, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004778

RESUMO

Since ancient times, edible sea cucumbers have been considered a jewel of the seabed and used in Asian folk medicine for stimulation of resistance against different diseases. However, the power of this sea food has not been established on a molecular level. A particular group of triterpene glycosides was found to be characteristic metabolites of the animals, responsible for this biological action. Using one of them, cucumarioside A2-2 (CA2-2) from the edible Cucumaria japonica species as an example as well as inhibitory analysis, patch-clamp on single macrophages, small interfering RNA technique, immunoblotting, SPR analysis, computer modeling and other methods, we demonstrate low doses of CA2-2 specifically to interact with P2X receptors (predominantly P2X4) on membranes of mature macrophages, enhancing the reversible ATP-dependent Ca2+ intake and recovering Ca2+ transport at inactivation of these receptors. As result, interaction of glycosides of this type with P2X receptors leads to activation of cellular immunity.


Assuntos
Cucumaria/química , Glicosídeos/farmacologia , Macrófagos/metabolismo , Receptores Purinérgicos P2X/metabolismo , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Cálcio/química , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Técnicas de Patch-Clamp , RNA Interferente Pequeno/metabolismo , Saponinas/farmacologia , Ressonância de Plasmônio de Superfície , Triterpenos/farmacologia
5.
Bioprocess Biosyst Eng ; 39(1): 53-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26494639

RESUMO

The process of silica formation in marine sponges is thought to be mediated by a family of catalytically active structure-directing enzymes called silicateins. It has been demonstrated in biomimicking syntheses that silicateins facilitated the formation of amorphous SiO2. Here, we present evidence that the silicatein LoSiLA1 from the marine sponge Latrunculia oparinae catalyzes the in vitro synthesis of hexa-tetrahedral SiO2 crystals of 200­300 nm. This was possible in the presence of the silica precursor tetrakis-(2-hydroxyethyl)-orthosilicate that is completely soluble in water and biocompatible, experiences hydrolysis­condensation at neutral pH and ambient conditions.


Assuntos
Organismos Aquáticos/enzimologia , Catepsinas/química , Nanopartículas/química , Poríferos/enzimologia , Dióxido de Silício/química , Animais , Organismos Aquáticos/genética , Catepsinas/genética , Poríferos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
6.
Org Lett ; 16(16): 4292-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25092065

RESUMO

Urupocidins A and B (1 and 2), bisguanidine alkaloids with an unprecedented skeleton system, derived from polyketide precursors and containing an unusual N-alkyl-N-hydroxyguanidine moiety, have been isolated from the sponge Monanhora pulchra. The structures of 1 and 2, including absolute configuration, were established using the detailed analysis of 1D and 2D NMR, CD, and mass spectra as well as chemical transformations. Compound 1 increases nitric oxide production in murine macrophages via inducing iNOS expression.


Assuntos
Alcaloides/farmacologia , Guanidinas/química , Guanidinas/farmacologia , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Poríferos/química , Alcaloides/química , Animais , Hidroxilaminas , Concentração Inibidora 50 , Biologia Marinha , Camundongos , Estrutura Molecular , Óxido Nítrico , Ressonância Magnética Nuclear Biomolecular
7.
Mar Biotechnol (NY) ; 13(4): 810-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21181423

RESUMO

Silicatein genes are involved in spicule formation in demosponges (Demospongiae: Porifera). However, numerous attempts to isolate silicatein genes from glass sponges (Hexactinellida: Porifera) resulted in a limited success. In the present investigation, we performed analysis of potential silicatein/cathepsin transcripts in three different species of glass sponges (Pheronema raphanus, Aulosaccus schulzei, and Bathydorus levis). In total, 472 clones of such transcripts have been analyzed. Most of them represent cathepsin transcripts and only three clones have been found to represent transcripts, which can be related to silicateins. Silicatein transcripts were identified in A. schulzei (Hexactinellida; Lyssacinosida; Rosselidae), and the corresponding gene was called AuSil-Hexa. Expression of AuSil-Hexa in A. schulzei was confirmed by real-time PCR. Comparative sequence analysis indicates high sequence identity of the A. schulzei silicatein with demosponge silicateins described previously. A phylogenetic analysis indicates that the AuSil-Hexa protein belongs to silicateins. However, the AuSil-Hexa protein contains a catalytic cysteine instead of the conventional serine.


Assuntos
Catepsinas/genética , Filogenia , Poríferos/genética , Conformação Proteica , Sequência de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , China , Clonagem Molecular , Biologia Computacional , Primers do DNA/genética , DNA Complementar/genética , Perfilação da Expressão Gênica , Modelos Genéticos , Dados de Sequência Molecular , Oceanos e Mares , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
8.
BMC Biochem ; 9: 14, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18495036

RESUMO

BACKGROUND: Nucleases, which are key components of biologically diverse processes such as DNA replication, repair and recombination, antiviral defense, apoptosis and digestion, have revolutionized the field of molecular biology. Indeed many standard molecular strategies, including molecular cloning, studies of DNA-protein interactions, and analysis of nucleic acid structures, would be virtually impossible without these versatile enzymes. The discovery of nucleases with unique properties has often served as the basis for the development of modern molecular biology methods. Thus, the search for novel nucleases with potentially exploitable functions remains an important scientific undertaking. RESULTS: Using degenerative primers and the rapid amplification of cDNA ends (RACE) procedure, we cloned the Duplex-Specific Nuclease (DSN) gene from the hepatopancreas of the Kamchatka crab and determined its full primary structure. We also developed an effective method for purifying functional DSN from the crab hepatopancreas. The isolated enzyme was highly thermostable, exhibited a broad pH optimum (5.5 - 7.5) and required divalent cations for activity, with manganese and cobalt being especially effective. The enzyme was highly specific, cleaving double-stranded DNA or DNA in DNA-RNA hybrids, but not single-stranded DNA or single- or double-stranded RNA. Moreover, only DNA duplexes containing at least 9 base pairs were effectively cleaved by DSN; shorter DNA duplexes were left intact. CONCLUSION: We describe a new DSN from Kamchatka crab hepatopancreas, determining its primary structure and developing a preparative method for its purification. We found that DSN had unique substrate specificity, cleaving only DNA duplexes longer than 8 base pairs, or DNA in DNA-RNA hybrids. Interestingly, the DSN primary structure is homologous to well-known Serratia-like non-specific nucleases structures, but the properties of DSN are distinct. The unique substrate specificity of DSN should prove valuable in certain molecular biology applications.


Assuntos
Braquiúros/enzimologia , Clonagem Molecular/métodos , Endonucleases/isolamento & purificação , Hepatopâncreas/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Braquiúros/genética , Endonucleases/química , Endonucleases/genética , Dados de Sequência Molecular
9.
Glycobiology ; 17(12): 1284-98, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17890508

RESUMO

To elucidate the origin and evolution of mannan-binding lectins (MBL), a new C-type lectin (CTL) specific for high-mannose glycans (MBL-AJ) was isolated from the coelomic plasma of the holothurian Apostichopus japonicus. MBL-AJ has oligomeric forms with identical 17-kDa subunits on SDS-PAGE. Among natural ligands, lectin hemagglutination activity was competitively inhibited by extracellular low-branched, but not high-branched, alpha-D-mannans isolated from marine halophilic bacteria and composed of alpha-1,2 and alpha-1,6 linked D-mannose residues. This suggests that the lectin interacts with backbone or inner side chain mannose residues, but not with terminal ones. The activity of the lectin was Ca(2+)-, pH-, and temperature-dependent. MBL-AJ cDNA was cloned from a holothurian coelomocyte cDNA library. The subunit of the mature protein has 159 amino acids and a single carbohydrate-recognition domain (CRD) of CTL. CRD contains a Glu-Pro-Asp amino acid sequence (EPN-motif) conserved for all known MBLs. A monospecific polyclonal antibody against MBL-AJ was obtained using the 34-kDa lectin dimer as an immunogen. The MBL-AJ has demonstrated immunochemical identity to the earlier isolated mannan-binding CTL from another holothurian, Cucumaria japonica. But a more interesting finding was cross-reactivity of MBL-AJ and human serum MBL detected by the antibody against MBL-AJ. Taking into consideration such MBL-AJ peculiarities as its carbohydrate specificity, the presence of a conserved region forming the mannose-binding site, common antigenic determinants with human MBL, and participation in defense reactions, it is possible that MBL-AJ belongs to the family of evolutionary conserved mannan-binding proteins.


Assuntos
Lectinas/química , Mananas/química , Stichopus/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Carboidratos/química , Dimerização , Glutaral/química , Hemaglutininas/química , Humanos , Ligantes , Lectina de Ligação a Manose/química , Modelos Biológicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
10.
Nucleic Acids Res ; 32(3): e37, 2004 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-14973331

RESUMO

We developed a novel simple cDNA normalization method [termed duplex-specific nuclease (DSN) normalization] that may be effectively used for samples enriched with full-length cDNA sequences. DSN normalization involves the denaturation-reassociation of cDNA, degradation of the double-stranded (ds) fraction formed by abundant transcripts and PCR amplification of the equalized single-stranded (ss) DNA fraction. The key element of this method is the degradation of the ds fraction formed during reassociation of cDNA using the kamchatka crab DSN, as described recently. This thermostable enzyme displays a strong preference for cleaving ds DNA and DNA in DNA-RNA hybrid duplexes compared with ss DNA and RNA, irrespective of sequence length. We developed normalization protocols for both first-strand cDNA [when poly(A)+ RNA is available] and amplified cDNA (when only total RNA can be obtained). Both protocols were evaluated in model experiments using human skeletal muscle cDNA. We also employed DSN normalization to normalize cDNA from nervous tissues of the marine mollusc Aplysia californica (a popular model organism in neuroscience) to illustrate further the efficiency of the normalization technique.


Assuntos
Braquiúros/enzimologia , DNA Complementar/metabolismo , Desoxirribonucleases/metabolismo , Animais , Aplysia/genética , Sistema Nervoso Central/metabolismo , DNA Complementar/genética , Biblioteca Gênica , Humanos , Biologia Molecular/métodos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo
11.
Genome Res ; 12(12): 1935-42, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12466298

RESUMO

We have characterized a novel nuclease from the Kamchatka crab, designated duplex-specific nuclease (DSN). DSN displays a strong preference for cleaving double-stranded DNA and DNA in DNA-RNA hybrid duplexes, compared to single-stranded DNA. Moreover, the cleavage rate of short, perfectly matched DNA duplexes by this enzyme is essentially higher than that for nonperfectly matched duplexes of the same length. Thus, DSN differentiates between one-nucleotide variations in DNA. We developed a novel assay for single nucleotide polymorphism (SNP) detection based on this unique property, termed "duplex-specific nuclease preference" (DSNP). In this innovative assay, the DNA region containing the SNP site is amplified and the PCR product mixed with signal probes (FRET-labeled short sequence-specific oligonucleotides) and DSN. During incubation, only perfectly matched duplexes between the DNA template and signal probe are cleaved by DSN to generate sequence-specific fluorescence. The use of FRET-labeled signal probes coupled with the specificity of DSN presents a simple and efficient method for detecting SNPs. We have employed the DSNP assay for the typing of SNPs in methyltetrahydrofolate reductase, prothrombin and p53 genes on homozygous and heterozygous genomic DNA.


Assuntos
Anomuros/enzimologia , Anomuros/genética , Endonucleases/genética , Ácidos Nucleicos Heteroduplexes/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Clonagem Molecular/métodos , Fígado/enzimologia , Modelos Genéticos , Dados de Sequência Molecular , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Pâncreas/enzimologia , Especificidade por Substrato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA