Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 158: 108713, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38688079

RESUMO

Boron doped diamond has been considered as a fouling-resistive electrode material for in vitro and in vivo detection of neurotransmitters. In this study, its performance in electrochemical detection of dopamine and serotonin in neuron cultivation media Neurobasal™ before and after cultivation of rat neurons was investigated. For differential pulse voltammetry the limits of detection in neat Neurobasal™ medium of 2 µM and 0.2 µM for dopamine and serotonin, respectively, were achieved on the polished surface, which is comparable with physiological values. On oxidized surface twofold higher values, but increased repeatabilities of the signals were obtained. However, in Neurobasal™ media with peptides-containing supplements necessary for cell cultivation, the voltammograms were notably worse shaped due to biofouling, especially in the medium isolated after neuron growth. In these complex media, the amperometric detection mode at +0.75 V (vs. Ag/AgCl) allowed to detect portion-wise additions of dopamine and serotonin (as low as 1-2 µM), mimicking neurotransmitter release from vesicles despite the lower sensitivity in comparison with neat NeurobasalTM. The results indicate substantial differences in detection on boron doped diamond electrode in the presence and absence of proteins, and the necessity of studies in real media for successful implementation to neuron-electrode interfaces.


Assuntos
Incrustação Biológica , Boro , Meios de Cultura , Diamante , Dopamina , Eletrodos , Neurônios , Serotonina , Serotonina/análise , Dopamina/análise , Boro/química , Diamante/química , Animais , Neurônios/citologia , Neurônios/metabolismo , Ratos , Incrustação Biológica/prevenção & controle , Meios de Cultura/química , Técnicas Eletroquímicas/métodos
2.
Biomed Pharmacother ; 152: 113262, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691156

RESUMO

Transient receptor potential canonical 5 (TRPC5) is a polymodal, calcium-permeable, nonselective ion channel that is expressed in the brain and 75 % of human sensory neurons. Its pharmacological or genetic inhibition leads to the relief of neuropathic and inflammatory pain. The clinically approved drug duloxetine is superior to other serotonin and norepinephrine reuptake inhibitors at managing painful neuropathies, but it is not known why. Here we ask whether the TRPC5 receptor is modulated by duloxetine and may contribute to its analgesic effect. Electrophysiological measurements of heterologously expressed human TRPC5 in HEK293T cells were performed to evaluate the effect of duloxetine. The interaction site was identified by molecular docking and molecular dynamics simulations in combination with point mutagenesis. We found that duloxetine inhibits TRPC5 in a concentration-dependent manner with a high potency (IC50 = 0.54 ± 0.03 µM). Our data suggest that duloxetine binds into a voltage sensor-like domain. For the interaction, Glu418 exhibited particular importance due to putative hydrogen bond formation. Duloxetine effectively inhibits TRPC5 currents induced by cooling, voltage, direct agonists and by the stimulation of the PLC pathway. The finding that this TRPC5 inhibitor is widely used and well tolerated provides a scaffold for new pain treatment strategies.


Assuntos
Dor , Canais de Cátion TRPC , Cloridrato de Duloxetina/farmacologia , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
3.
Anal Chim Acta ; 1182: 338949, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34602205

RESUMO

Novel porous boron-doped diamond (BDDporous)-based materials have attracted lots of research interest due to their enhanced detection ability and biocompatibility, favouring them for use in neuroscience. This study reports on morphological, spectral, and electrochemical characterisation of three BDDporous electrodes of different thickness given by a number of deposited layers (2, 3 and 5). These were prepared using microwave plasma-enhanced chemical vapour deposition on SiO2 nanofiber-based scaffolds. Further, the effect of number of layers and poly-l-lysine coating, commonly employed in neuron cultivation experiments, on sensing properties of the neurotransmitter dopamine in a pH 7.4 phosphate buffer media was investigated. The boron doping level of ∼2 × 1021 atoms cm-3 and increased content of non-diamond (sp2) carbon in electrodes with more layers was evaluated by Raman spectroscopy. Cyclic voltammetric experiments revealed reduced working potential windows (from 2.4 V to 2.2 V), higher double-layer capacitance values (from 405 µF cm-2 to 1060 µF cm-2), enhanced rates of electron transfer kinetics and larger effective surface areas (from 5.04 mm2 to 7.72 mm2), when the number of porous layers increases. For dopamine, a significant boost in analytical performance was recognized with increasing number of layers using square-wave voltammetry: the highest sensitivity of 574.1 µA µmol-1 L was achieved on a BDDporous electrode with five layers and dropped to 35.9 µA µmol-1 L when the number of layers decreased to two. Consequently, the lowest detection limit of 0.20 µmol L-1 was obtained on a BDDporous electrode with five layers. Moreover, on porous electrodes, enhanced selectivity for dopamine detection in the presence of ascorbic acid and uric acid was demonstrated. The application of poly-l-lysine coating on porous electrode surface resulted in a decrease in dopamine peak currents by 17% and 60% for modification times of 1 h and 15 h, respectively. Hence, both examined parameters, the number of deposited porous layers and the presence of poly-l-lysine coating, were proved to considerably affect the characteristics and performance of BDDporous electrodes.


Assuntos
Boro , Dopamina , Eletrodos , Porosidade , Dióxido de Silício
4.
Br J Pharmacol ; 178(19): 3888-3904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33988248

RESUMO

BACKGROUND AND PURPOSE: Neurosteroids influence neuronal function and have multiple promising clinical applications. Direct modulation of postsynaptic neurotransmitter receptors by neurosteroids is well characterized, but presynaptic effects remain poorly understood. Here, we report presynaptic glutamate release potentiation by neurosteroids pregnanolone and pregnanolone sulfate and compare their mechanisms of action to phorbol 12,13-dibutyrate (PDBu), a mimic of the second messenger DAG. EXPERIMENTAL APPROACH: We use whole-cell patch-clamp electrophysiology and pharmacology in rat hippocampal microisland cultures and total internal reflection fluorescence (TIRF) microscopy in HEK293 cells expressing GFP-tagged vesicle priming protein Munc13-1, to explore the mechanisms of neurosteroid presynaptic modulation. KEY RESULTS: Pregnanolone sulfate and pregnanolone potentiate glutamate release downstream of presynaptic Ca2+ influx, resembling the action of a phorbol ester PDBu. PDBu partially occludes the effect of pregnanolone, but not of pregnanolone sulfate. Calphostin C, an inhibitor that disrupts DAG binding to its targets, reduces the effect PDBu and pregnanolone, but not of pregnanolone sulfate, suggesting that pregnanolone might interact with a well-known DAG/phorbol ester target Munc13-1. However, TIRF microscopy experiments found no evidence of pregnanolone-induced membrane translocation of GFP-tagged Munc13-1, suggesting that pregnanolone may regulate Munc13-1 indirectly or interact with other DAG targets. CONCLUSION AND IMPLICATIONS: We describe a novel presynaptic effect of neurosteroids pregnanolone and pregnanolone sulfate to potentiate glutamate release downstream of presynaptic Ca2+ influx. The mechanism of action of pregnanolone, but not of pregnanolone sulfate, partly overlaps with that of PDBu. Presynaptic effects of neurosteroids may contribute to their therapeutic potential in the treatment of disorders of the glutamate system.


Assuntos
Neuroesteroides , Pregnanolona , Animais , Ácido Glutâmico , Células HEK293 , Humanos , Pregnanolona/farmacologia , Ratos , Sulfatos
5.
J Neurosci ; 41(10): 2119-2134, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33526476

RESUMO

NMDARs are ligand-gated ion channels that cause an influx of Na+ and Ca2+ into postsynaptic neurons. The resulting intracellular Ca2+ transient triggers synaptic plasticity. When prolonged, it may induce excitotoxicity, but it may also activate negative feedback to control the activity of NMDARs. Here, we report that a transient rise in intracellular Ca2+ (Ca2+ challenge) increases the sensitivity of NMDARs but not AMPARs/kainate receptors to the endogenous inhibitory neurosteroid 20-oxo-5ß-pregnan-3α-yl 3-sulfate and to its synthetic analogs, such as 20-oxo-5ß-pregnan-3α-yl 3-hemipimelate (PAhPim). In cultured hippocampal neurons, 30 µm PAhPim had virtually no effect on NMDAR responses; however, following the Ca2+ challenge, it inhibited the responses by 62%; similarly, the Ca2+ challenge induced a 3.7-fold decrease in the steroid IC50 on recombinant GluN1/GluN2B receptors. The increase in the NMDAR sensitivity to PAhPim was dependent on three cysteines (C849, C854, and C871) located in the carboxy-terminal domain of the GluN2B subunit, previously identified to be palmitoylated (Hayashi et al., 2009). Our experiments suggested that the Ca2+ challenge induced receptor depalmitoylation, and single-channel analysis revealed that this was accompanied by a 55% reduction in the probability of channel opening. Results of in silico modeling indicate that receptor palmitoylation promotes anchoring of the GluN2B subunit carboxy-terminal domain to the plasma membrane and facilitates channel opening. Depalmitoylation-induced changes in the NMDAR pharmacology explain the neuroprotective effect of PAhPim on NMDA-induced excitotoxicity. We propose that palmitoylation-dependent changes in the NMDAR sensitivity to steroids serve as an acute endogenous mechanism that controls NMDAR activity.SIGNIFICANCE STATEMENT There is considerable interest in negative allosteric modulators of NMDARs that could compensate for receptor overactivation by glutamate or de novo gain-of-function mutations in neurodevelopmental disorders. By a combination of electrophysiological, pharmacological, and computational techniques we describe a novel feedback mechanism regulating NMDAR activity. We find that a transient rise in intracellular Ca2+ increases NMDAR sensitivity to inhibitory neurosteroids in a process dependent on GluN2B subunit depalmitoylation. These results improve our understanding of the molecular mechanisms of steroid action at the NMDAR and indeed of the basic properties of this important glutamate-gated ion channel and may aid in the development of therapeutics for treating neurologic and psychiatric diseases related to overactivation of NMDARs without affecting normal physiological functions.


Assuntos
Lipoilação/fisiologia , Neuroproteção/fisiologia , Pregnanos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células HEK293 , Hipocampo/fisiologia , Humanos , Lipoilação/efeitos dos fármacos , Masculino , Pregnanos/metabolismo , Ratos , Ratos Wistar
6.
Sci Rep ; 10(1): 12651, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724221

RESUMO

Cholesterol is a structural component of cellular membranes particularly enriched in synapses but its role in synaptic transmission remains poorly understood. We used rat hippocampal cultures and their acute cholesterol depletion by methyl-ß-cyclodextrin as a tool to describe the physiological role of cholesterol in glutamatergic synaptic transmission. Cholesterol proved to be a key molecule for the function of synapses as its depletion resulted in a significant reduction of both NMDA receptor (NMDAR) and AMPA/kainate receptor-mediated evoked excitatory postsynaptic currents (eEPSCs), by 94% and 72%, respectively. We identified two presynaptic and two postsynaptic steps of synaptic transmission which are modulated by cholesterol and explain together the above-mentioned reduction of eEPSCs. In the postsynapse, we show that physiological levels of cholesterol are important for maintaining the normal probability of opening of NMDARs and for keeping NMDARs localized in synapses. In the presynapse, our results favour the hypothesis of a role of cholesterol in the propagation of axonal action potentials. Finally, cholesterol is a negative modulator of spontaneous presynaptic glutamate release. Our study identifies cholesterol as an important endogenous regulator of synaptic transmission and provides insight into molecular mechanisms underlying the neurological manifestation of diseases associated with impaired cholesterol synthesis or decomposition.


Assuntos
Colesterol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
7.
Neuropharmacology ; 140: 217-232, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30099049

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate excitatory neurotransmission in the mammalian central nervous system (CNS), and their dysregulation results in the aetiology of many CNS syndromes. Several NMDAR modulators have been used successfully in clinical trials (including memantine) and NMDARs remain a promising pharmacological target for the treatment of CNS syndromes. 1,2,3,4-Tetrahydro-9-aminoacridine (tacrine; THA) was the first approved drug for Alzheimer's disease (AD) treatment. 7-methoxyderivative of THA (7-MEOTA) is less toxic and showed promising results in patients with tardive dyskinesia. We employed electrophysiological recordings in HEK293 cells and rat neurones to examine the mechanism of action of THA and 7-MEOTA at the NMDAR. We showed that both THA and 7-MEOTA are "foot-in-the-door" open-channel blockers of GluN1/GluN2 receptors and that 7-MEOTA is a more potent but slower blocker than THA. We found that the IC50 values for THA and 7-MEOTA exhibited the GluN1/GluN2A < GluN1/GluN2B < GluN1/GluN2C = GluN1/GluN2D relationship and that 7-MEOTA effectively inhibits human GluN1/GluN2A-M817V receptors that carry a pathogenic mutation. We also showed that 7-MEOTA is a "foot-in-the-door" open-channel blocker of GluN1/GluN3 receptors, although these receptors were not inhibited by memantine. In addition, the inhibitory potency of 7-MEOTA at synaptic and extrasynaptic hippocampal NMDARs was similar, and 7-MEOTA exhibited better neuroprotective activity when compared with THA and memantine in rats with NMDA-induced lesions of the hippocampus. Finally, intraperitoneal administration of 7-MEOTA attenuated MK-801-induced hyperlocomotion and pre-pulse inhibition deficit in rats. We conclude that 7-MEOTA may be considered for the treatment of diseases associated with the dysfunction of NMDARs.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tacrina/análogos & derivados , Animais , Células Cultivadas , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Humanos , Locomoção/efeitos dos fármacos , Masculino , Memantina/farmacologia , Mutação , Neurônios/fisiologia , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/genética , Tacrina/farmacologia
8.
Front Mol Neurosci ; 11: 113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681798

RESUMO

N-methyl-D-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the central nervous system, underlie the induction of synaptic plasticity, and their malfunction is associated with human diseases. Native NMDARs are tetramers composed of two obligatory GluN1 subunits and various combinations of GluN2A-D or, more rarely, GluN3A-B subunits. Each subunit consists of an amino-terminal, ligand-binding, transmembrane and carboxyl-terminal domain. The ligand-binding and transmembrane domains are interconnected via polypeptide chains (linkers). Upon glutamate and glycine binding, these receptors undergo a series of conformational changes leading to the opening of the Ca2+-permeable ion channel. Here we report that different deletions and mutations of amino acids in the M3-S2 linkers of the GluN1 and GluN2B subunits lead to constitutively open channels. Irrespective of whether alterations were introduced in the GluN1 or the GluN2B subunit, application of glutamate or glycine promoted receptor channel activity; however, responses induced by the GluN1 agonist glycine were larger, on average, than those induced by glutamate. We observed the most prominent effect when residues GluN1(L657) and GluN2B(I655) were deleted or altered to glycine. In parallel, molecular modeling revealed that two interacting pairs of residues, the LILI motif (GluN1(L657) and GluN2B(I655)), form a functional unit with the TTTT ring (GluN1(T648) and GluN2B(T647)), described earlier to control NMDAR channel gating. These results provide new insight into the structural organization and functional interplay of the LILI and the TTTT ring during the course of NMDAR channel opening and closing.

9.
J Cell Mol Med ; 22(2): 1355-1362, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29210178

RESUMO

Exposure to repetitive low-frequency electromagnetic field (LF-EMF) shows promise as a non-invasive approach to treat various sensory and neurological disorders. Despite considerable progress in the development of modern stimulation devices, there is a limited understanding of the mechanisms underlying their biological effects and potential targets at the cellular level. A significant impact of electromagnetic field on voltage-gated calcium channels and downstream signalling pathways has been convincingly demonstrated in many distinct cell types. However, evidence for clear effects on primary sensory neurons that particularly may be responsible for the analgesic actions of LF-EMF is still lacking. Here, we used F11 cells derived from dorsal root ganglia neurons as an in vitro model of peripheral sensory neurons and three different protocols of high-induction magnetic stimulation to determine the effects on chemical responsiveness and spontaneous activity. We show that short-term (<180 sec.) exposure of F11 cells to LF-EMF reduces calcium transients in response to bradykinin, a potent pain-producing inflammatory agent formed at sites of injury. Moreover, we characterize an immediate and reversible potentiating effect of LF-EMF on neuronal spontaneous activity. Our results provide new evidence that electromagnetic field may directly modulate the activity of sensory neurons and highlight the potential of sensory neuron-derived cell line as a tool for studying the underlying mechanisms at the cellular and molecular level.


Assuntos
Campos Eletromagnéticos , Células Receptoras Sensoriais/metabolismo , Bradicinina/farmacologia , Cálcio/metabolismo , Linhagem Celular , Humanos , Células Receptoras Sensoriais/efeitos dos fármacos , Canal de Cátion TRPA1/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-28089695

RESUMO

The mechanism of tacrine as a precognitive drug has been considered to be complex and not fully understood. It has been reported to involve a wide spectrum of targets involving cholinergic, gabaergic, nitrinergic and glutamatergic pathways. Here, we review the effect of tacrine and its derivatives on the NMDA receptors (NMDAR) with a focus on the mechanism of action and biological consequences related to the Alzheimer's disease treatment. Our findings indicate that effect of tacrine on glutamatergic neurons is both direct and indirect. Direct NMDAR antagonistic effect is often reported by in vitro studies; however, it is achieved by high tacrine concentrations which are not likely to occur under clinical conditions. The impact on memory and behavioral testing can be ascribed to indirect effects of tacrine caused by influencing the NMDAR-mediated currents via M1 receptor activation, which leads to inhibition of Ca2+-activated potassium channels. Such inhibition prevents membrane repolarization leading to prolonged NMDAR activation and subsequently to long term potentiation. Considering these findings, we can conclude that tacrine-derivatives with dual cholinesterase and NMDARs modulating activity may represent a promising approach in the drug development for diseases associated with cognitive dysfunction, such as the Alzheimer disease.


Assuntos
Inibidores da Colinesterase/farmacologia , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Tacrina/farmacologia , Animais , Humanos , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Tacrina/química
11.
J Physiol ; 593(10): 2279-93, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25651798

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid-NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-ß-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-ß-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Colesterol Oxidase/farmacologia , Colesterol/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Sinvastatina/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Colesterol/deficiência , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Masculino , Fluidez de Membrana/efeitos dos fármacos , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/fisiologia , Condução Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , beta-Ciclodextrinas/farmacologia
12.
Gen Physiol Biophys ; 34(2): 189-200, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25504063

RESUMO

Organophosphorus nerve agents inhibit acetylcholinesterase (AChE) which causes the breakdown of the transmitter acetylcholine (ACh) in the synaptic cleft. Overstimulation of cholinergic receptors (muscarinic and nicotinic) by excessive amounts of ACh causes several health problems and may even cause death. Reversible AChE inhibitors play an important role in prophylaxis against nerve agents. The presented study investigated whether 7-methoxytacrine (7-MEOTA) and 7-MEOTA-donepezil derivatives can act as central and peripheral reversible AChE inhibitors and simultaneously antagonize muscarinic and nicotinic receptors. The possible mechanism of action was studied on cell cultures (patch clamp technique, calcium mobilization assay) and on isolated smooth muscle tissue (contraction study). Furthermore, the kinetics of the compounds were also examined. CNS availability was predicted by determining the passive blood-brain barrier penetration estimated via a modified PAMPA assay. In conclusion, this study provides promising evidence that the new synthesized 7-MEOTA-donepezil derivatives have the desired anticholinergic effect; they can inhibit AChE, and nicotinic and muscarinic receptors in the micromolar range. Furthermore, they seem to penetrate readily into the CNS. However, their real potency and benefit must be verified by in vivo experiments.


Assuntos
Antagonistas Colinérgicos/administração & dosagem , Indanos/administração & dosagem , Antagonistas Muscarínicos/administração & dosagem , Fibras Musculares Esqueléticas/metabolismo , Antagonistas Nicotínicos/administração & dosagem , Piperidinas/administração & dosagem , Tacrina/análogos & derivados , Animais , Células Cultivadas , Donepezila , Relação Dose-Resposta a Droga , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Ratos , Ratos Wistar , Tacrina/administração & dosagem
13.
Eur J Pharmacol ; 738: 352-9, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24929055

RESUMO

Lobeline is a plant alkaloid known to interact with cholinergic system. The effect of lobeline on neuronal α3ß4 receptors expressed in COS cells and muscle embryonic αßγδ receptors naturally expressed in TE671 cells was studied using a patch-clamp technique. Our results show that lobeline inhibited responses to acetylcholine in human embryonic muscle nicotinic receptor in a pseudo-noncompetitive manner. The responses of rat neuronal α3ß4 receptors to a low concentration of acetylcholine were potentiated by a mixed occupation mechanism that corresponds to "competitive potentiation". This potentiation turned into voltage-dependent inhibition for α3ß4 receptors was activated by a high concentration of acetylcholine.


Assuntos
Lobelina/farmacologia , Músculos/metabolismo , Neurônios/metabolismo , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Músculos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Ratos
14.
Curr Alzheimer Res ; 10(8): 893-906, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24093535

RESUMO

Alzheimer´s disease (AD) is a progressive neurodegenerative dementia which currently represents one of the biggest threats for the human kind. The cure is still unknown and various hypotheses (cholinergic, amyloidal, oxidative, vascular etc.) are investigated in order to understand the pathophysiology of the disease and on this basis find an effective treatment. Tacrine, the first approved drug for the AD disease treatment, has been reported to be a multitargeted drug, however it was withdrawn from the market particularly due to its hepatotoxicity. Its derivative 7-methoxytacrine (7- MEOTA) probably due to the different metabolization does not exert this side effect. The aim of our study was to compare these two cholinesterase inhibitors from various, mainly cholinergic, points of view relevant for a potential AD drug. We found that 7-MEOTA does not fall behind its more well-known parent compound - tacrine. Furthermore, we found, that 7-MEOTA exerts better properties in most of the tests related to a possible AD treatment. Only the pharmacokinetics and a higher acetylcholinesterase and butyrylcholinesterase inhibitory potency would slightly give advantages to tacrine over 7-MEOTA, but concerning its lower toxicity, better antioxidant properties, interaction with muscarinic and nicotinic receptors and "safer" metabolization provide strong evidence for reconsider 7-MEOTA and its derivatives as candidate molecules for the treatment of AD.


Assuntos
Inibidores da Colinesterase/farmacologia , Tacrina/análogos & derivados , Tacrina/farmacologia , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
15.
Eur J Pharmacol ; 688(1-3): 22-6, 2012 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-22634638

RESUMO

The C-547 is the most effective muscle and tissue-specific anticholinesterase among alkylammonium derivatives of 6-methyluracil (ADEMS) acting in nanomolar concentrations on locomotor muscles but not on respiratory muscles, smooth muscles and heart and brain acetylcholine esterases (AChE). When applied systematically it could influence peripheral acetylcholine receptors. The aim of the present study was to investigate the effect of C-547 on rat α3ß4 (ganglionic type) and αßεδ (muscle type) nicotinic receptors expressed in COS cells. Currents evoked by rapid application of acetylcholine or nicotine were recorded in whole-cell mode by electrophysiological patch-clamp technique 2-4 days after cell transfection by plasmids coding the α3ß4 or αßεδ combination of receptor subunits. In cells sensitive to acetylcholine, the application of C-547 evoked no responses. When acetylcholine was applied during an already running application of C-547, acetylcholine responses were only inhibited at concentrations higher than 10(-7)M. This inhibition is not voltage-dependent, but is accompanied by an increased rate of desensitization. Thus in both types of receptors, effective doses are approximately 100 times higher than those inhibiting AChE in leg muscles and similar to those inhibiting respiratory diaphragm muscles and external intercostal muscles. These observations show that C-547 can be considered for symptomatic treatment of myasthenia gravis and other congenital myasthenic syndromes as an inhibitor of AChE in leg muscles at concentrations much lower than those inhibiting muscle and ganglion types of acetylcholine receptors.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Subunidades Proteicas/metabolismo , Compostos de Amônio Quaternário/farmacologia , Receptores Nicotínicos/metabolismo , Uracila/análogos & derivados , Acetilcolina/farmacologia , Animais , Células COS , Chlorocebus aethiops , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Especificidade de Órgãos , Ratos , Uracila/farmacologia
16.
Anesthesiology ; 116(4): 903-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22314297

RESUMO

BACKGROUND: The recent discovery that camphor activates and strongly desensitizes the capsaicin-sensitive and noxious heat-sensitive channel transient receptor potential vanilloid subfamily member 1 (TRPV1) has provided new insights and opened up new research paths toward understanding why this naturally occurring monoterpene is widely used in human medicine for its local counter-irritant, antipruritic, and anesthetic properties. However, the molecular basis for camphor sensitivity remains mostly unknown. The authors attempt to explore the nature of the activation pathways evoked by camphor and narrow down a putative interaction site at TRPV1. METHODS: The authors transiently expressed wild-type or specifically mutated recombinant TRPV1 channels in human embryonic kidney cells HEK293T and recorded cation currents with the whole cell, patch clamp technique. To monitor changes in the spatial distribution of phosphatidylinositol 4,5-bisphosphate, they used fluorescence resonance energy transfer measurements from cells transfected with the fluorescent protein-tagged pleckstrin homology domains of phospholipase C. RESULTS: The results revealed that camphor modulates TRPV1 channel through the outer pore helix domain by affecting its overall gating equilibrium. In addition, camphor, which generally is known to decrease the fluidity of cell plasma membranes, may also regulate the activity of TRPV1 by inducing changes in the spatial distribution of phosphatidylinositol-4,5-bisphosphate on the inner leaflet of the plasma membrane. CONCLUSIONS: The findings of this study provide novel insights into the structural basis for the modulation of TRPV1 channel by camphor and may provide an explanation for the mechanism by which camphor modulates thermal sensation in vivo.


Assuntos
Cânfora/farmacologia , Canais de Cátion TRPV/fisiologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cânfora/química , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Poro Nuclear/efeitos dos fármacos , Poro Nuclear/metabolismo , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Ratos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/química
17.
Eur J Pharmacol ; 658(2-3): 108-13, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21371469

RESUMO

The effect of lobeline on rat α4ß2 nicotinic receptors expressed in COS cells was studied using the patch-clamp technique. Currents were recorded in whole-cell mode 2-4 days after cell transfection by plasmids coding the α4ß2 combination of receptor subunits. In cells sensitive to acetylcholine, the application of lobeline evoked minor responses (up to 2% of maximal acetylcholine response). When acetylcholine was applied to the background of an already running application of lobeline, acetylcholine responses were inhibited in a concentration- and time dependent manner. However, when lobeline was applied simultaneously with acetylcholine without any prepulse or during an already running application of acetylcholine, the acetylcholine responses were potentiated up to 300-600% of that of the control. The site of lobeline action overlaps with the cholinergic site, as was proven by the partially protective effect of (+)-tubocurarine. Thus, lobeline can apparently desensitize receptors when applied alone (inhibition) whereas its binding to a second agonist site with the first one already occupied by acetylcholine leads to channel opening (potentiation).


Assuntos
Lobelina/farmacologia , Neurônios/metabolismo , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Células COS , Chlorocebus aethiops , Sinergismo Farmacológico , Ratos
18.
Mol Microbiol ; 75(6): 1550-62, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20199594

RESUMO

The adenylate cyclase toxin-haemolysin of Bordetella (CyaA) targets CD11b(+) myeloid phagocytes and translocates across their cytoplasmic membrane an adenylate cyclase (AC) enzyme that catalyses conversion of cytosolic ATP into cAMP. In parallel, CyaA acts as a cytolysin forming cation-selective pores, which permeabilize cell membrane and eventually provoke cell lysis. Using cytolytic activity, potassium efflux and patch-clamp assays, we show that a combination of substitutions within the pore-forming (E570Q) and acylation-bearing domain (K860R) ablates selectively the cell-permeabilizing activity of CyaA. At the same time, however, the capacity of such mutant CyaA to translocate the AC domain across cytoplasmic membrane into cytosol of macrophage cells and to elevate cellular cAMP concentrations remained intact. Moreover, the combination of E570Q+K860R substitutions suppressed the residual cytolytic activity of the enzymatically inactive CyaA/OVA/AC(-) toxoid on CD11b-expressing monocytes, while leaving unaffected the capacity of the mutant toxoid to deliver in vitro a reporter CD8(+) T cell epitope from ovalbumin (OVA) to the cytosolic pathway of dendritic cells for MHC class I-restricted presentation and induce in vivo an OVA-specific cytotoxic T cell response. CyaA, hence, employs a mechanism of AC enzyme domain translocation across cellular membrane that avoids passage across the cytolytic pore formed by toxin oligomers.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Membrana Celular/metabolismo , Toxina Adenilato Ciclase/genética , Substituição de Aminoácidos , Animais , Células Cultivadas , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Macrófagos/imunologia , Camundongos , Modelos Biológicos , Monócitos/imunologia , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ovalbumina/imunologia , Transporte Proteico , Linfócitos T Citotóxicos/imunologia
19.
Biochim Biophys Acta ; 1778(4): 864-71, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18249185

RESUMO

The role of negatively charged amino acids in the F-loop of the beta 4 subunit in channel activation and desensitization was studied using the patch-clamp technique. The selected amino acids were changed to their neutral analogs via point mutations. Whole-cell currents were recorded in COS cells transiently transfected with the alpha 3 beta 4 nicotinic acetylcholine receptor. The application of acetylcholine (ACh), nicotine (Nic), cytisine (Cyt), carbamylcholine (CCh) and epibatidine (Epi) to cells clamped at -40 mV produced inward currents which displayed biphasic desensitization. The EC50 of Epi and Nic were increased by a factor of 3-6 due to mutations D191N or D192N. Only Epi remained an agonist in the double-mutated receptors with EC50 increased 17-fold. The interaction of the receptors with the competitive antagonist (+)tubocurarine (TC) was weakened almost 3-fold in the double-mutated receptors. The mutations increased the proportion of the slower desensitization component and increased the response plateau, resulting in decreased receptor desensitization. The double mutation substantially accelerated the return from long-term desensitization induced by Epi.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Neurônios/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células COS , Chlorocebus aethiops , Cinética , Dados de Sequência Molecular , Mutação/genética , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Estrutura Secundária de Proteína , Piridinas/farmacologia , Ratos , Alinhamento de Sequência , Relação Estrutura-Atividade , Tubocurarina/farmacologia
20.
Cell Biochem Funct ; 26(2): 264-74, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18041110

RESUMO

The molecular mechanisms involved in GPCR-initiated signaling cascades where the two receptors share the same signaling cascade, such as thyrotropin-releasing hormone (TRH) and angiotensin II (ANG II), are still far from being understood. Here, we analyzed hormone-induced Ca(2+) responses and the process of desensitization in HEK-293 cells, which express endogenous ANG II receptors. These cells were transfected to express exogenously high levels of TRH receptors (clone E2) or both TRH receptors and G(11)alpha protein (clone E2M11). We observed that the characteristics of the Ca(2+) response, as well as the process of desensitization, were both strongly dependent on receptor number and G(11)alpha protein level. Whereas treatment of E2 cells with TRH or ANG II led to significant desensitization of the Ca(2+) response to subsequent addition of either hormone, the response was not desensitized in E2M11 cells expressing high levels of G(11)alpha. In addition, stimulation of both cell lines with THR elicited a clear heterologous desensitization to subsequent stimulation with ANG II. On the other hand, ANG II did not affect a subsequent response to TRH. ANG II-mediated signal transduction was strongly dependent on plasma membrane integrity modified by cholesterol depletion, but signaling through TRH receptors was altered only slightly under these conditions. It may be concluded that the level of expression of G-protein-coupled receptors and their cognate G-proteins strongly influences not only the magnitude of the Ca(2+) response but also the process of desensitization and resistance to subsequent hormone addition.


Assuntos
Angiotensina II/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Membrana Celular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/biossíntese , Hormônio Liberador de Tireotropina/farmacologia , Cálcio/farmacologia , Sinalização do Cálcio/fisiologia , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/análise , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Receptores do Hormônio Liberador da Tireotropina/biossíntese , Receptores do Hormônio Liberador da Tireotropina/efeitos dos fármacos , Temperatura , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA