Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(3): 781-791, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423534

RESUMO

In order to recapitulate complex eukaryotic compartmentalization, synthetic biology aims to recreate cellular membrane-lined compartments from the bottom-up. Many important cellular organelles and cell-produced extracellular vesicles are in the size range of several hundreds of nanometers. Although attaining a fundamental characterization and mimicry of their cellular functions is a compelling goal, the lack of methods for controlled vesicle formation in this size range has hindered full understanding. Here, we show the optimization of a simple and efficient protocol for the production of large unilamellar vesicles (LUVs) with a median diameter in the range of 450-550 nm with high purity. Importantly, we rely on commercial reagents and common laboratory equipment. We thoroughly characterize the influence of different experimental parameters on the concentration and size of the resulting vesicles and assess changes in their lipid composition and surface charge. We provide guidance for researchers to optimize LUV production further to suit specific applications.


Assuntos
Lipossomos , Lipossomas Unilamelares
2.
Nature ; 607(7919): 492-498, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859200

RESUMO

To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry1-5. Ratcheting is thought to underpin the function of many natural biological motors, such as the F1F0-ATPase6-8, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. 3) and also in artificial molecular motors created by organic chemical synthesis9-12. DNA nanotechnology13 has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems14-17, which can adopt different configurations, for example, triggered by strand-displacement reactions18,19 or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins20-26. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity27,28 led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F1F0-ATPase.


Assuntos
DNA , Difusão Facilitada , Proteínas Motores Moleculares , DNA/química , Concentração de Íons de Hidrogênio , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Movimento (Física) , Movimento , Concentração Osmolar , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Processos Estocásticos , Temperatura , Termodinâmica
3.
Nat Commun ; 12(1): 4393, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285204

RESUMO

Creating artificial macromolecular transport systems that can support the movement of molecules along defined routes is a key goal of nanotechnology. Here, we report the bottom-up construction of a macromolecular transport system in which molecular pistons diffusively move through micrometer-long, hollow filaments. The pistons can cover micrometer distances in fractions of seconds. We build the system using multi-layer DNA origami and analyze the structures of the components using transmission electron microscopy. We study the motion of the pistons along the tubes using single-molecule fluorescence microscopy and perform Langevin simulations to reveal details of the free energy surface that directs the motions of the pistons. The tubular transport system achieves diffusivities and displacement ranges known from natural molecular motors and realizes mobility improvements over five orders of magnitude compared to previous artificial random walker designs. Electric fields can also be employed to actively pull the pistons along the filaments, thereby realizing a nanoscale electric rail system. Our system presents a platform for artificial motors that move autonomously driven by chemical fuels and for performing nanotribology studies, and it could form a basis for future molecular transportation networks.


Assuntos
DNA/química , Movimento (Física) , Nanotecnologia/métodos , Nanotubos/química , DNA/ultraestrutura , Eletricidade , Cinética , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanotecnologia/instrumentação , Nanotubos/ultraestrutura , Propriedades de Superfície
4.
Nat Commun ; 11(1): 6229, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277481

RESUMO

The methods of DNA nanotechnology enable the rational design of custom shapes that self-assemble in solution from sets of DNA molecules. DNA origami, in which a long template DNA single strand is folded by many short DNA oligonucleotides, can be employed to make objects comprising hundreds of unique DNA strands and thousands of base pairs, thus in principle providing many degrees of freedom for modelling complex objects of defined 3D shapes and sizes. Here, we address the problem of accurate structural validation of DNA objects in solution with cryo-EM based methodologies. By taking into account structural fluctuations, we can determine structures with improved detail compared to previous work. To interpret the experimental cryo-EM maps, we present molecular-dynamics-based methods for building pseudo-atomic models in a semi-automated fashion. Among other features, our data allows discerning details such as helical grooves, single-strand versus double-strand crossovers, backbone phosphate positions, and single-strand breaks. Obtaining this higher level of detail is a step forward that now allows designers to inspect and refine their designs with base-pair level interventions.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Nucleotídeos/química , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Nanoestruturas/ultraestrutura
5.
ACS Nano ; 13(7): 8114-8123, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31194509

RESUMO

Multicolored gene reporters for light microscopy are indispensable for biomedical research, but equivalent genetic tools for electron microscopy (EM) are still rare despite the increasing importance of nanometer resolution for reverse engineering of molecular machinery and reliable mapping of cellular circuits. We here introduce the fully genetic encapsulin/cargo system of Quasibacillus thermotolerans (Qt), which in combination with the recently characterized encapsulin system from Myxococcus xanthus (Mx) enables multiplexed gene reporter imaging via conventional transmission electron microscopy (TEM) in mammalian cells. Cryo-electron reconstructions revealed that the Qt encapsulin shell self-assembles to nanospheres with T = 4 icosahedral symmetry and a diameter of ∼43 nm harboring two putative pore regions at the 5-fold and 3-fold axes. We also found that upon heterologous expression in mammalian cells, the native cargo is autotargeted to the inner surface of the shell and exhibits ferroxidase activity leading to efficient intraluminal iron biomineralization, which enhances cellular TEM contrast. We furthermore demonstrate that the two differently sized encapsulins of Qt and Mx do not intermix and can be robustly differentiated by conventional TEM via a deep learning classifier to enable automated multiplexed EM gene reporter imaging.


Assuntos
Bacillus/genética , Genes Reporter/genética , Ferro/química , Myxococcus xanthus/genética , Nanocompostos/química , Microscopia Eletrônica , Tamanho da Partícula , Propriedades de Superfície
6.
Sci Adv ; 4(8): eaau1157, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30128357

RESUMO

Bottom-up fabrication of custom nanostructures using the methods of DNA nanotechnology has great potential for applications in many areas of science and technology. One obstacle to applications concerns the constrained environmental conditions at which DNA objects retain their structure. We present a general, site-selective, and scalable method for creating additional covalent bonds that increase the structural stability of DNA nanostructures. Placement of thymidines in close proximity within DNA nanostructures allows the rational creation of sites for covalent cyclobutane pyrimidine dimer (CPD) bonds induced via ultraviolet irradiation. The additional covalent bonds may be used in a sequence-programmable fashion to link free strand termini, to bridge strand breaks at crossover sites, and to create additional interhelical connections. Thus designed multilayer DNA origami objects can remain stable at temperatures up to 90°C and in pure double-distilled water with no additional cations present. In addition, these objects show enhanced resistance against nuclease activity. Cryo-electron microscopy (cryo-EM) structural analysis of non-cross-linked and cross-linked objects indicated that the global shape and the internal network of crossovers are preserved after irradiation. A cryo-EM map of a CPD-stabilized multilayer DNA origami object determined at physiological ionic strength reveals a substantial swelling behavior, presumably caused by repulsive electrostatic forces that, without covalent stabilization, would cause disassembly at low ionic strength. Our method opens new avenues for applications of DNA nanostructures in a wider range of conditions.


Assuntos
Microscopia Crioeletrônica/métodos , DNA/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA