RESUMO
Fungal community analyses in homes have been attracting attention because fungi are now generally considered to be allergens. Currently, these analyses are generally conducted using the culture method, although fungal communities in households often contain species that are difficult to culture. In contrast, next-generation sequencing (NGS) represents a comprehensive, labor- and time-saving approach that can facilitate species identification. However, the reliability of the NGS method has not been compared to that of the culture method. In this study, in an attempt to demonstrate the reliability of this application, we used the NGS method to target the internal transcribed spacer 1 (ITS1) in the fungal genome, conducted fungal community analyses for 18 house-dust samples and analyzed fungal community structures. The NGS method positively correlated with the culture method regarding the relative abundance of Aspergillus, Penicillium, Cladosporium and yeasts, which represent the major fungal components found in houses. Furthermore, several genera, such as Malassezia, could be sensitively detected. Our results imply that the reliability of the NGS method is comparable to that of the culture method and indicates that easily available databases may require modifications, including the removal of registrations that have not been sufficiently classified at the genus level.
Assuntos
Alérgenos , Poeira , Fungos , Micobioma , Alérgenos/análise , Poeira/análise , Fungos/genética , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Micobioma/genética , Reprodutibilidade dos TestesRESUMO
Aspergillus section Versicolores species, except Aspergillus sydowii, produce a carcinogenic mycotoxin sterigmatocystin (STC). Since these fungi are found in varied environmental milieu including indoor dust and food products, our aim was to develop a sensitive and convenient assay to detect STC producing fungal strains. We made use of a high discrimination DNA polymerase (HiDi DNA polymerase), for single nucleotide polymorphism (SNP)-based PCR amplification. Using specific primer pairs based on the SNPs between A. sydowii and other strains of Aspergillus section Versicolores, we succeeded in amplifying the genomic DNA all target strains except A. sydowii. These results confirm that the SNP-based PCR amplification technique, using a high discrimination DNA polymerase, was a reliable and robust screening method for target fungal strains.
Assuntos
Aspergillus/genética , DNA Polimerase Dirigida por DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Sequência de Bases , Calmodulina/genética , Calmodulina/metabolismo , Carcinógenos/análise , Carcinógenos/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Fúngicas/metabolismo , Reação em Cadeia da Polimerase/normas , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Alinhamento de Sequência , Esterigmatocistina/análise , Esterigmatocistina/biossínteseRESUMO
Sterigmatocystin is a genotoxic and hepatocarcinogenic mycotoxin that contaminates foods and environments worldwide. Sterigmatocystin is produced as a precursor to aflatoxin B1 or as an end product by certain Aspergilli. Aspergillus section Versicolores is one of the major sections including sterigmatocystin-producing species and is thus a potential health and environmental hazard. Recently, the taxonomy of this section was revised and classified into 14 species on the basis of molecular phylogenetic analysis. However, investigation of the distribution and sterigmatocystin production of each species has been limited; in particular, its distribution in foods has been scarcely reported. In this study, we collected isolates of Aspergillus section Versicolores from various foods and environments in Japan and investigated their distribution and sterigmatocystin production. The isolates were classified into nine species or species groups, which revealed that A. creber, A. puulaauensis/tennesseensis and A. sydowii are the main species/species groups in Japan. In addition, A. versicolor sensu stricto was detected with some frequency, specifically in foods. Furthermore, the two species A. creber and A. versicolor sensu stricto frequently produced sterigmatocystin. It is therefore important for food safety to intensively monitor these two species and distinguish them from other species, especially A. sydowii, which is not considered to produce sterigmatocystin.
RESUMO
Fecal specimens (271 samples) from wild deer, Cervus nippon centralis, were collected from nine different areas in Japan; these samples were subjected to a real-time reverse transcription PCR for Cryptosporidium-and Giardia-specific 18S ribosomal RNA to investigate the prevalence of Cryptosporidium and Giardia infection. The incidence of Cryptosporidium and Giardia in the nine areas ranged from 0% to 20.0% and 0% to 3.4%, respectively. The prevalence of Cryptosporidium among male and female deer was 8.1% and 3.9%, respectively, while that of Giardia was 0.7% and 0.8%. Sequence analysis identified the Cryptosporidium deer genotype, Cryptosporidium bovis, Cryptosporidium ryanae and Cryptosporidium meleagridis from the sequence of Cryptosporidium-specific partial 18S ribosomal RNA and Giardia intestinalis assemblage A from the partial sequence of Giardia-specific 18S rRNA. The variation in regional prevalence indicates that Cryptosporidium infection depends on environmental factors, and that bovine Cryptosporidium was detected more frequently than cervine Cryptosporidium. These data suggest that wild deer might be a healthy carrier of bovine Cryptosporidium.
RESUMO
In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
Assuntos
Perfilação da Expressão Gênica , Genoma , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas , Especificidade da EspécieRESUMO
Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting ChIP-seq datasets. (1) A large fraction of binding sites are at distal enhancer sites and cannot be directly associated to their targets, without chromatin conformation data. (2) Many peaks may be non-functional: even when there is a peak at a promoter, the expression of the gene may not be affected in the matching perturbation experiment.
RESUMO
Basic leucine zipper transcription factor Batf2 is poorly described, whereas Batf and Batf3 have been shown to play essential roles in dendritic cell, T cell, and B cell development and regulation. Batf2 was drastically induced in IFN-γ-activated classical macrophages (M1) compared with unstimulated or IL-4-activated alternative macrophages (M2). Batf2 knockdown experiments from IFN-γ-activated macrophages and subsequent expression profiling demonstrated important roles for regulation of immune responses, inducing inflammatory and host-protective genes Tnf, Ccl5, and Nos2. Mycobacterium tuberculosis (Beijing strain HN878)-infected macrophages further induced Batf2 and augmented host-protective Batf2-dependent genes, particularly in M1, whose mechanism was suggested to be mediated through both TLR2 and TLR4 by LPS and heat-killed HN878 (HKTB) stimulation experiments. Irf1 binding motif was enriched in the promoters of Batf2-regulated genes. Coimmunoprecipitation study demonstrated Batf2 association with Irf1. Furthermore, Irf1 knockdown showed downregulation of IFN-γ- or LPS/HKTB-activated host-protective genes Tnf, Ccl5, Il12b, and Nos2. Conclusively, Batf2 is an activation marker gene for M1 involved in gene regulation of IFN-γ-activated classical macrophages, as well as LPS/HKTB-induced macrophage stimulation, possibly by Batf2/Irf1 gene induction. Taken together, these results underline the role of Batf2/Irf1 in inducing inflammatory responses in M. tuberculosis infection.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fator Regulador 1 de Interferon/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Mycobacterium/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Análise por Conglomerados , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/farmacologia , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Infecções por Mycobacterium/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismoRESUMO
Transcriptional Regulatory Networks (TRNs) coordinate multiple transcription factors (TFs) in concert to maintain tissue homeostasis and cellular function. The re-establishment of target cell TRNs has been previously implicated in direct trans-differentiation studies where the newly introduced TFs switch on a set of key regulatory factors to induce de novo expression and function. However, the extent to which TRNs in starting cell types, such as dermal fibroblasts, protect cells from undergoing cellular reprogramming remains largely unexplored. In order to identify TFs specific to maintaining the fibroblast state, we performed systematic knockdown of 18 fibroblast-enriched TFs and analyzed differential mRNA expression against the same 18 genes, building a Matrix-RNAi. The resulting expression matrix revealed seven highly interconnected TFs. Interestingly, suppressing four out of seven TFs generated lipid droplets and induced PPARG and CEBPA expression in the presence of adipocyte-inducing medium only, while negative control knockdown cells maintained fibroblastic character in the same induction regime. Global gene expression analyses further revealed that the knockdown-induced adipocytes expressed genes associated with lipid metabolism and significantly suppressed fibroblast genes. Overall, this study reveals the critical role of the TRN in protecting cells against aberrant reprogramming, and demonstrates the vulnerability of donor cell's TRNs, offering a novel strategy to induce transgene-free trans-differentiations.
Assuntos
Transdiferenciação Celular/genética , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adulto , Células Cultivadas , Fibroblastos/citologia , Humanos , Recém-Nascido , Interferência de RNA , Fatores de Transcrição/antagonistas & inibidores , TranscriptomaRESUMO
Combinatorial interactions of transcription modulators are critical to regulate cell-specific expression and to drive direct cell reprogramming (e.g. trans-differentiation). However, the identification of key transcription modulators from myriad of candidate genes is laborious and time consuming. To rapidly identify key regulatory factors involved in direct cell reprogramming, we established a multiplex single-cell screening system using a fibroblast-to-monocyte transition model. The system implements a single-cell 'shotgun-transduction' strategy followed by nested-single-cell-polymerase chain reaction (Nesc-PCR) gene expression analysis. To demonstrate this, we simultaneously transduced 18 monocyte-enriched transcription modulators in fibroblasts followed by selection of single cells expressing monocyte-specific CD14 and HLA-DR cell-surface markers from a heterogeneous population. Highly multiplex Nesc-PCR expression analysis revealed a variety of gene combinations with a significant enrichment of SPI1 (86/86) and a novel transcriptional modulator, HCLS1 (76/86), in the CD14(+)/HLA-DR(+) single cells. We could further demonstrate the synergistic role of HCLS1 in regulating monocyte-specific gene expressions and phagocytosis in dermal fibroblasts in the presence of SPI1. This study establishes a platform for a multiplex single-cell screening of combinatorial transcription modulators to drive any direct cell reprogramming.
Assuntos
Transdiferenciação Celular/genética , Análise de Célula Única/métodos , Transcrição Gênica , Células Cultivadas , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Lentivirus/genética , Monócitos/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismoRESUMO
Hydroxymethylcytosines (hmC), one of several reported cytosine modifications, was recently found to be enriched in embryonic stem cells and neuronal cells, and thought to play an important role in regulating gene expression and cell specification. However, unlike methylcytosines (mC), the fate of hmC beyond DNA replication is not well understood. Here, to monitor the status of hmC during DNA replication, we prepared a stable episomal vector-based monitoring system called MoCEV in 293T cells. The MoCEV system containing fully hydroxymethylated-cytosine fragments revealed a significant modification towards mC after several rounds of DNA replication. Strikingly this modification was specifically observed at the CpG sites (71.9% of cytosines), whereas only 1.1% of modified cytosines were detected at the non-CpG sites. Since the unmodified MoCEV did not undergo any DNA methylation during cell division, the results strongly suggest that somatic cells undergo hmC to mC specifically at the CpG sites during cell division.
Assuntos
5-Metilcitosina/metabolismo , Ilhas de CpG , Citosina/análogos & derivados , Metilação de DNA , Replicação do DNA , Reação em Cadeia da Polimerase/métodos , 5-Metilcitosina/análise , Sequência de Bases , Citosina/análise , Citosina/metabolismo , Vetores Genéticos , Células HEK293 , HumanosRESUMO
Transcriptional regulatory networks (TRN) control the underlying mechanisms behind cellular functions and they are defined by a set of core transcription factors regulating cascades of peripheral genes. Here we report SPI1, CEBPA, MNDA and IRF8 as core transcription factors of monocyte TRN and demonstrate functional inductions of phagocytosis, inflammatory response and chemotaxis activities in human dermal fibroblasts. The Gene Ontology and KEGG pathway analyses also revealed notable representation of genes involved in immune response and endocytosis in fibroblasts. Moreover, monocyte TRN-inducers triggered multiple monocyte-specific genes based on the transcription factor motif response analysis and suggest that complex cellular TRNs are uniquely amenable to elicit cell-specific functions in unrelated cell types.
Assuntos
Fibroblastos/citologia , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes/imunologia , Monócitos/citologia , Fatores de Transcrição/imunologia , Quimiotaxia/imunologia , Primers do DNA/genética , Mineração de Dados , Citometria de Fluxo , Perfilação da Expressão Gênica , Vetores Genéticos/genética , Humanos , Lentivirus , Lipopolissacarídeos , Análise em Microsséries , Monócitos/imunologia , Monócitos/metabolismo , Fagocitose/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Fatores de Transcrição/metabolismoRESUMO
Human DICER1 protein cleaves double-stranded RNA into small sizes, a crucial step in production of single-stranded RNAs which are mediating factors of cytoplasmic RNA interference. Here, we clearly demonstrate that human DICER1 protein localizes not only to the cytoplasm but also to the nucleoplasm. We also find that human DICER1 protein associates with the NUP153 protein, one component of the nuclear pore complex. This association is detected predominantly in the cytoplasm but is also clearly distinguishable at the nuclear periphery. Additional characterization of the NUP153-DICER1 association suggests NUP153 plays a crucial role in the nuclear localization of the DICER1 protein.
Assuntos
Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ribonuclease III/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , RNA Helicases DEAD-box/genética , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Microscopia Confocal , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica , Interferência de RNA , Ribonuclease III/genéticaRESUMO
Gene regulatory networks in living cells are controlled by the interaction of multiple cell type-specific transcription regulators with DNA binding sites in target genes. Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence binding protein (ICSBP), is a transcription factor expressed predominantly in myeloid and lymphoid cell lineages. To find the functional direct target genes of IRF8, the gene expression profiles of siRNA knockdown samples and genome-wide binding locations by ChIP-chip were analyzed in THP-1 myelomonocytic leukemia cells. Consequently, 84 genes were identified as functional direct targets. The ETS family transcription factor PU.1, also known as SPI1, binds to IRF8 and regulates basal transcription in macrophages. Using the same approach, we identified 53 direct target genes of PU.1; these overlapped with 19 IRF8 targets. These 19 genes included key molecules of IFN signaling such as OAS1 and IRF9, but excluded other IFN-related genes amongst the IRF8 functional direct target genes. We suggest that IRF8 and PU.1 can have both combined, and independent actions on different promoters in myeloid cells.
Assuntos
Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Técnicas Genéticas , Humanos , Modelos Biológicos , Células Mieloides/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismoRESUMO
BACKGROUND: Histone modifications play an important role in gene regulation. Acetylation of histone 3 lysine 9 (H3K9ac) is generally associated with transcription initiation and unfolded chromatin, thereby positively influencing gene expression. Deep sequencing of the 5' ends of gene transcripts using DeepCAGE delivers detailed information about the architecture and expression level of gene promoters. The combination of H3K9ac ChIP-chip and DeepCAGE in a myeloid leukemia cell line (THP-1) allowed us to study the spatial distribution of H3K9ac around promoters using a novel clustering approach. The promoter classes were analyzed for association with relevant genomic sequence features. RESULTS: We performed a clustering of 4,481 promoters according to their surrounding H3K9ac signal and analyzed the clustered promoters for association with different sequence features. The clustering revealed three groups with major H3K9ac signal upstream, centered and downstream of the promoter. Narrow single peak promoters tend to have a concentrated activity of H3K9ac in the upstream region, while broad promoters tend to have a concentrated activity of H3K9ac and RNA polymerase II binding in the centered and downstream regions. A subset of promoters with high gene expression level, compared to subsets with low and medium gene expression, shows dramatic increase in H3K9ac activity in the upstream cluster only; this may indicate that promoters in the centered and downstream clusters are predominantly regulated at post-initiation steps. Furthermore, the upstream cluster is depleted in CpG islands and more likely to regulate un-annotated genes. CONCLUSIONS: Clustering core promoters according to their surrounding acetylation signal is a promising approach for the study of histone modifications. When examining promoters clustered into groups according to their surrounding H3K9 acetylation signal, we find that the relative localization and intensity of H3K9ac is very specific depending on characteristic sequence features of the promoter. Experimental data from DeepCAGE and ChIP-chip experiments using undifferentiated (monocyte) and differentiated (macrophage) THP-1 cells leads us to the same conclusions.
Assuntos
Genoma Humano , Código das Histonas , Regiões Promotoras Genéticas , Acetilação , Linhagem Celular , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Lisina/metabolismo , RNA Polimerase II/metabolismoRESUMO
Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.
Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Evolução Molecular , Humanos , Camundongos , Monócitos/citologia , Especificidade de Órgãos , Proteína Smad3/metabolismo , Transativadores/metabolismoRESUMO
BACKGROUND: With the move towards systems biology, we need sensitive and reliable ways to determine the relationships between transcription factors and their target genes. In this paper we analyze the regulatory relationships between 78 myeloid transcription factors and their coding genes by using the matrix RNAi system in which a set of transcription factor genes are individually knocked down and the resultant expression perturbation is quantified. RESULTS: Using small interfering RNAs we knocked down the 78 transcription factor genes in monocytic THP-1 cells and monitored the perturbation of the expression of the same 78 transcription factors and 13 other transcription factor genes as well as 5 non-transcription factor genes by quantitative real-time RT-PCR, thereby building a 78 x 96 matrix of perturbation and measurement. This approach identified 876 cases where knockdown of one transcription factor significantly affected the expression of another (from a potential 7,488 combinations). Our study also revealed cell-type-specific transcriptional regulatory networks in two different cell types. CONCLUSIONS: By considering whether the targets of a given transcription factor are naturally up- or downregulated during phorbol 12-myristate 13-acetate-induced differentiation, we could classify these edges as pro-differentiative (229), anti-differentiative (76) or neither (571) using expression profiling data obtained in the FANTOM4 study. This classification analysis suggested that several factors could be involved in monocytic differentiation, while others such as MYB and the leukemogenic fusion MLL-MLLT3 could help to maintain the initial undifferentiated state by repressing the expression of pro-differentiative factors or maintaining expression of anti-differentiative factors.
Assuntos
Modelos Genéticos , Monócitos/metabolismo , Interferência de RNA , Fatores de Transcrição/genética , Diferenciação Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Modelos Biológicos , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , TransfecçãoRESUMO
Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.
Assuntos
Diferenciação Celular/genética , Proliferação de Células , Redes Reguladoras de Genes , Transcrição Gênica , Sequência de Bases , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismoRESUMO
It has been reported that relatively short RNAs of heterogeneous sizes are derived from sequences near the promoters of eukaryotic genes. In conjunction with the FANTOM4 project, we have identified tiny RNAs with a modal length of 18 nt that map within -60 to +120 nt of transcription start sites (TSSs) in human, chicken and Drosophila. These transcription initiation RNAs (tiRNAs) are derived from sequences on the same strand as the TSS and are preferentially associated with G+C-rich promoters. The 5' ends of tiRNAs show peak density 10-30 nt downstream of TSSs, indicating that they are processed. tiRNAs are generally, although not exclusively, associated with highly expressed transcripts and sites of RNA polymerase II binding. We suggest that tiRNAs may be a general feature of transcription in metazoa and possibly all eukaryotes.
Assuntos
RNA/química , Sítio de Iniciação de Transcrição , Animais , Embrião de Galinha , Galinhas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Humanos , Regiões Promotoras Genéticas , RNA/metabolismo , Transcrição GênicaRESUMO
BACKGROUND: Immediate early genes are considered to play important roles in dynamic gene regulatory networks following exposure to appropriate stimuli. One of the immediate early genes, early growth response gene 1 (EGR-1), has been implicated in differentiation of human monoblastoma cells along the monocytic commitment following treatment with phorbol ester. EGR-1 has been thought to work as a modifier of monopoiesis, but the precise function of EGR-1 in monocytic differentiation has not been fully elucidated. RESULTS: We performed the first genome-wide analysis of EGR-1 binding sites by chromatin immunoprecipitation with promoter array (ChIP-chip) and identified EGR-1 target sites in differentiating THP-1 cells. By combining the results with previously reported FANTOM4 data, we found that EGR-1 binding sites highly co-localized with CpG islands, acetylated histone H3 lysine 9 binding sites, and CAGE tag clusters. Gene Ontology (GO) analysis revealed enriched terms, including binding of molecules, in EGR-1 target genes. In addition, comparison with gene expression profiling data showed that EGR-1 binding influenced gene expression. Moreover, observation of in vivo occupancy changes of DNA binding proteins following PMA stimulation indicated that SP1 binding occupancies were dramatically changed near EGR-1 binding sites. CONCLUSIONS: We conclude that EGR-1 mainly recognizes GC-rich consensus sequences in promoters of active genes. GO analysis and gene expression profiling data confirm that EGR-1 is involved in initiation of information transmission in cell events. The observations of in vivo occupancy changes of EGR-1 and SP1 suggest that several types of interplay between EGR-1 and other proteins result in multiple responses to EGR-1 downstream genes.
Assuntos
Diferenciação Celular/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Genoma Humano/genética , Monócitos/metabolismo , Acetilação , Sítios de Ligação/genética , Western Blotting , Linhagem Celular , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Monócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , TransfecçãoRESUMO
Islet antigen-2 (IA-2 or ICA 512) and IA-2beta (or phogrin) are major autoantigens in type 1 diabetes. They are located in dense core secretory vesicles including insulin granules, but their role in beta-cell function is unclear. Targeted disruption of either IA-2 or IA-2beta, or both, impaired glucose tolerance, an effect attributed to diminution of insulin secretion. In this study, we therefore characterized the dynamic changes in cytosolic Ca2+([Ca2+](c)) and insulin secretion in islets from IA-2/IA-2beta double knockout (KO) mice. High glucose (15 mM) induced biphasic insulin secretion in IA-2/IA-2beta KO islets, with a similar first phase and smaller second phase compared with controls. Since the insulin content of IA-2/IA-2beta KO islets was approximately 45% less than that of controls, fractional insulin secretion (relative to content) was thus increased during first phase and unaffected during second phase. This peculiar response occurred in spite of a slightly smaller rise in [Ca2+](c), could not be attributed to an alteration of glucose metabolism (NADPH fluorescence) and also was observed with tolbutamide. The dual control of insulin secretion via the K(ATP) channel-dependent triggering pathway and K(ATP) channel-independent amplifying pathway was unaltered in IA-2/IA-2beta KO islets, and so were the potentiations by acetylcholine or cAMP (forskolin). Intriguingly, amino acids, in particular the cationic arginine and lysine, induced larger fractional insulin secretion in IA-2/IA-2beta KO than control islets. In conclusion, IA-2 and IA-2beta are dispensable for exocytosis of insulin granules, but are probably more important for cargo loading and/or stability of dense core vesicles.