Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Phys Med Biol ; 69(12)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776948

RESUMO

Objective.Single-photon emission computed tomography (SPECT) with pinhole collimators can provide high-resolution imaging, but is often limited by low sensitivity. Acquiring projections simultaneously through multiple pinholes affords both high resolution and high sensitivity. However, the overlap of projections from different pinholes on detectors, known as multiplexing, has been shown to cause artefacts which degrade reconstructed images.Approach.Multiplexed projection sets were considered here using an analytic simulation model of AdaptiSPECT-C-a brain-dedicated multi-pinhole SPECT system. AdaptiSPECT-C has fully adaptable aperture shutters, so can acquire projections with a combination of multiplexed and non-multiplexed frames using temporal shuttering. Two strategies for reducing multiplex artefacts were considered: an algorithm to de-multiplex projections, and an alternating reconstruction strategy for projections acquired with a combination of multiplexed and non-multiplexed frames. Geometric and anthropomorphic digital phantoms were used to assess a number of metrics.Main results.Both de-multiplexing strategies showed a significant reduction in image artefacts and improved fidelity, image uniformity, contrast recovery and activity recovery (AR). In all cases, the two de-multiplexing strategies resulted in superior metrics to those from images acquired with only mux-free frames. The de-multiplexing algorithm provided reduced image noise and superior uniformity, whereas the alternating strategy improved contrast and AR.Significance.The use of these de-multiplexing algorithms means that multi-pinhole SPECT systems can acquire projections with more multiplexing without degradation of images.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Humanos , Algoritmos
2.
J Opt Soc Am A Opt Image Sci Vis ; 39(7): 1275-1281, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215613

RESUMO

For imaging instruments that are in space looking toward the Earth, there are a variety of nuisance signals that can get in the way of performing certain imaging tasks, such as reflections from clouds, reflections from the ground, and emissions from the OH-airglow layer. A method for separating these signals is to perform tomographic reconstructions from the collected data. A lingering struggle for this method is altitude-axis resolution and different methods for helping with it are discussed. An implementation of the maximum likelihood expectation maximization algorithm is given and analyzed.

3.
J Opt Soc Am A Opt Image Sci Vis ; 39(7): 1282-1288, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215614

RESUMO

This paper is part 2 of two papers that explore performing tomographic reconstructions from a space platform. A simplified model of short-wave infrared emissions in the atmosphere is given. Simulations were performed that tested the effectiveness of reconstructions given signal amplitude, frequency, signal-to-noise ratio, number of iterations run, and others. Maximum likelihood expectation maximization is shown to be effective for reconstructing low signal cases.

4.
Inverse Probl ; 36(8)2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33071423

RESUMO

The potential to perform attenuation and scatter compensation (ASC) in single-photon emission computed tomography (SPECT) imaging without a separate transmission scan is highly significant. In this context, attenuation in SPECT is primarily due to Compton scattering, where the probability of Compton scatter is proportional to the attenuation coefficient of the tissue and the energy of the scattered photon and the scattering angle are related. Based on this premise, we investigated whether the SPECT scattered-photon data acquired in list-mode (LM) format and including the energy information can be used to estimate the attenuation map. For this purpose, we propose a Fisher-information-based method that yields the Cramer-Rao bound (CRB) for the task of jointly estimating the activity and attenuation distribution using only the SPECT emission data. In the process, a path-based formalism to process the LM SPECT emission data, including the scattered-photon data, is proposed. The Fisher information method was implemented on NVIDIA graphics processing units (GPU) for acceleration. The method was applied to analyze the information content of SPECT LM emission data, which contains up to first-order scattered events, in a simulated SPECT system with parameters modeling a clinical system using realistic computational studies with 2-D digital synthetic and anthropomorphic phantoms. The method was also applied to LM data containing up to second-order scatter for a synthetic phantom. Experiments with anthropomorphic phantoms simulated myocardial perfusion and dopamine transporter (DaT)-Scan SPECT studies. The results show that the CRB obtained for the attenuation and activity coefficients was typically much lower than the true value of these coefficients. An increase in the number of detected photons yielded lower CRB for both the attenuation and activity coefficients. Further, we observed that systems with better energy resolution yielded a lower CRB for the attenuation coefficient. Overall, the results provide evidence that LM SPECT emission data, including the scattered photons, contains information to jointly estimate the activity and attenuation coefficients.

5.
Med Phys ; 46(7): 3311-3323, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31111961

RESUMO

PURPOSE: Internal organ motion reduces the accuracy and efficacy of radiation therapy. However, there is a lack of tools to objectively (based on a medical or scientific task) assess the dosimetric consequences of motion, especially on an individual basis. We propose to use therapy operating characteristic (TOC) analysis to quantify the effects of motion on treatment efficacy for individual patients. We demonstrate the application of this tool with pancreatic stereotactic body radiation therapy (SBRT) clinical data and explore the origin of motion sensitivity. METHODS: The technique is described as follows. (a) Use tumor-motion data measured from patients to calculate the motion-convolved dose of the gross tumor volume (GTV) and the organs at risk (OARs). (b) Calculate tumor control probability (TCP) and normal tissue complication probability (NTCP) from the motion-convolved dose-volume histograms. (c) Construct TOC curves from TCP and NTCP models. (d) Calculate the area under the TOC curve (AUTOC) and use it as a figure of merit for treatment efficacy. We used tumor motion data measured from patients to calculate the relation between AUTOC and motion magnitude for 25 pancreatic SBRT treatment plans. Furthermore, to explore the driving factor of motion sensitivity of a given plan, we compared the dose distribution of motion-sensitive plans and motion-robust plans and studied the dependence of motion sensitivity to motion directions. RESULTS: Our technique is able to recognize treatment plans that are sensitive to motion. Under the presence of motion, the treatment efficacy of some plans changes from providing high tumor control and low risks of complications to providing no tumor control and high risks of side effects. Several treatment plans experience falloffs in AUTOC at a smaller magnitude of motion than other plans. In our dataset, a potential indicator of a motion-sensitive treatment plan is that the duodenum is in proximity to the tumor in the SI direction. CONCLUSIONS: The TOC framework can serve as a tool to quantify the effects of internal organ motion in radiation therapy. With pancreatic SBRT clinical data, we applied this tool to study the change in treatment efficacy induced by motion for individual treatment plans. This framework could potentially be used clinically to understand the effects of motion in an individual patient and to design a patient-specific motion management plan. This framework could also be used in research to evaluate different components of the treatment process, such as motion-management techniques, treatment-planning algorithms, and treatment margins.


Assuntos
Movimento , Neoplasias Pancreáticas/fisiopatologia , Neoplasias Pancreáticas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radiocirurgia , Dosagem Radioterapêutica
6.
IEEE Trans Med Imaging ; 38(5): 1251-1262, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30475713

RESUMO

It is widely accepted that optimization of imaging system performance should be guided by task-based measures of image quality. It has been advocated that imaging hardware or data-acquisition designs should be optimized by use of an ideal observer that exploits full statistical knowledge of the measurement noise and class of objects to be imaged, without consideration of the reconstruction method. In practice, accurate and tractable models of the complete object statistics are often difficult to determine. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and sparse image reconstruction are innately coupled technologies. In this paper, a sparsity-driven observer (SDO) that can be employed to optimize hardware by use of a stochastic object model describing object sparsity is described and investigated. The SDO and sparse reconstruction method can, therefore, be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute the SDO test statistic, computational tools developed recently for variational Bayesian inference with sparse linear models are adopted. The use of the SDO to rank data-acquisition designs in a stylized example as motivated by magnetic resonance imaging is demonstrated. This paper reveals that the SDO can produce rankings that are consistent with visual assessments of the reconstructed images but different from those produced by use of the traditionally employed Hotelling observer.


Assuntos
Teorema de Bayes , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
7.
Med Phys ; 45(7): 2952-2963, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29734479

RESUMO

PURPOSE: In traditional multipinhole SPECT systems, image multiplexing - the overlapping of pinhole projection images - may occur on the detector, which can inhibit quality image reconstructions due to photon-origin uncertainty. One proposed system to mitigate the effects of multiplexing is the synthetic-collimator SPECT system. In this system, two detectors, a silicon detector and a germanium detector, are placed at different distances behind the multipinhole aperture, allowing for image detection to occur at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. The unwanted effects of multiplexing are reduced by utilizing the additional data collected from the front silicon detector. However, determining optimal system configurations for a given imaging task requires efficient parsing of the complex parameter space, to understand how pinhole spacings and the two detector distances influence system performance. METHODS: In our simulation studies, we use the ensemble mean-squared error of the Wiener estimator (EMSEW ) as the figure of merit to determine optimum system parameters for the task of estimating the uptake of an 123 I-labeled radiotracer in three different regions of a computer-generated mouse brain phantom. The segmented phantom map is constructed by using data from the MRM NeAt database and allows for the reduction in dimensionality of the system matrix which improves the computational efficiency of scanning the system's parameter space. To contextualize our results, the Wiener estimator is also compared against a region of interest estimator using maximum-likelihood reconstructed data. RESULTS: Our results show that the synthetic-collimator SPECT system outperforms traditional multipinhole SPECT systems in this estimation task. We also find that image multiplexing plays an important role in the system design of the synthetic-collimator SPECT system, with optimal germanium detector distances occurring at maxima in the derivative of the percent multiplexing function. Furthermore, we report that improved task performance can be achieved by using an adaptive system design in which the germanium detector distance may vary with projection angle. Finally, in our comparative study, we find that the Wiener estimator outperforms the conventional region of interest estimator. CONCLUSIONS: Our work demonstrates how this optimization method has the potential to quickly and efficiently explore vast parameter spaces, providing insight into the behavior of competing factors, which are otherwise very difficult to calculate and study using other existing means.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Animais , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Camundongos , Imagens de Fantasmas
8.
J Med Imaging (Bellingham) ; 4(4): 045503, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29201940

RESUMO

Maintaining or even improving image quality while lowering patient dose is always the desire in clinical computed tomography (CT) imaging. Iterative reconstruction (IR) algorithms have been designed to allow for a reduced dose while maintaining or even improving an image. However, we have previously shown that the dose-saving capabilities allowed with IR are different for different clinical tasks. The channelized scanning linear observer (CSLO) was applied to study clinical tasks that combine detection and estimation when assessing CT image data. The purpose of this work is to illustrate the importance of task complexity when assessing dose savings and to move toward more realistic tasks when performing these types of studies. Human-observer validation of these methods will take place in a future publication. Low-contrast objects embedded in body-size phantoms were imaged multiple times and reconstructed by filtered back projection (FBP) and an IR algorithm. The task was to detect, localize, and estimate the size and contrast of low-contrast objects in the phantom. Independent signal-present and signal-absent regions of interest cropped from images were channelized by the dense-difference of Gauss channels for CSLO training and testing. Estimation receiver operating characteristic (EROC) curves and the areas under EROC curves (EAUC) were calculated by CSLO as the figure of merit. The one-shot method was used to compute the variance of the EAUC values. Results suggest that the IR algorithm studied in this work could efficiently reduce the dose by [Formula: see text] while maintaining an image quality comparable to conventional FBP reconstruction warranting further investigation using real patient data.

9.
Med Phys ; 44(8): 3990-3999, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28555878

RESUMO

PURPOSE: Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e., multislice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multislice reading, and to determine if the 2D model observer still correlate well with human observer performance in multislice reading. METHODS: A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at five dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multislice channelized Hotelling observer (CHO_MS), which integrates multislice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multislice viewing performance and the two CHO models. RESULTS: Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode [Pearson product-moment correlation coefficient R = 0.972, 95% confidence interval (CI): 0.919 to 0.990] and with the CHO_MS performance in the multislice viewing mode (R = 0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multislice viewing mode (R = 0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multislice and 2D modes. One reader performed better in the multislice mode (P = 0.013); whereas the other two readers showed no significant difference between the two viewing modes (P = 0.057 and P = 0.38). CONCLUSIONS: A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multislice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multislice viewing is used.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Variações Dependentes do Observador , Imagens de Fantasmas , Doses de Radiação
10.
J Med Imaging (Bellingham) ; 3(3): 035503, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27493982

RESUMO

The use of a channelization mechanism on model observers not only makes mimicking human visual behavior possible, but also reduces the amount of image data needed to estimate the model observer parameters. The channelized Hotelling observer (CHO) and channelized scanning linear observer (CSLO) have recently been used to assess CT image quality for detection tasks and combined detection/estimation tasks, respectively. Although the use of channels substantially reduces the amount of data required to compute image quality, the number of scans required for CT imaging is still not practical for routine use. It is our desire to further reduce the number of scans required to make CHO or CSLO an image quality tool for routine and frequent system validations and evaluations. This work explores different data-reduction schemes and designs an approach that requires only a few CT scans. Three different kinds of approaches are included in this study: a conventional CHO/CSLO technique with a large sample size, a conventional CHO/CSLO technique with fewer samples, and an approach that we will show requires fewer samples to mimic conventional performance with a large sample size. The mean value and standard deviation of areas under ROC/EROC curve were estimated using the well-validated shuffle approach. The results indicate that an 80% data reduction can be achieved without loss of accuracy. This substantial data reduction is a step toward a practical tool for routine-task-based QA/QC CT system assessment.

11.
J Opt Soc Am A Opt Image Sci Vis ; 33(4): 689-97, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140781

RESUMO

Observer models were developed to process data in list-mode format in order to perform binary discrimination tasks for use in an arms-control-treaty context. Data used in this study was generated using GEANT4 Monte Carlo simulations for photons using custom models of plutonium inspection objects and a radiation imaging system. Observer model performance was evaluated and presented using the area under the receiver operating characteristic curve. The ideal observer was studied under both signal-known-exactly conditions and in the presence of unknowns such as object orientation and absolute count-rate variability; when these additional sources of randomness were present, their incorporation into the observer yielded superior performance.

12.
Phys Med Biol ; 60(18): 7359-85, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26350439

RESUMO

Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Medicina Nuclear , Imagens de Fantasmas , Fótons , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simulação por Computador , Humanos , Processamento de Sinais Assistido por Computador
13.
Magn Reson Imaging ; 33(10): 1267-1273, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26284600

RESUMO

PURPOSE: To assess the value of semi-automated segmentation applied to diffusion MRI for predicting the therapeutic response of liver metastasis. METHODS: Conventional diffusion weighted magnetic resonance imaging (MRI) was performed using b-values of 0, 150, 300 and 450s/mm(2) at baseline and days 4, 11 and 39 following initiation of a new chemotherapy regimen in a pilot study with 18 women with 37 liver metastases from primary breast cancer. A semi-automated segmentation approach was used to identify liver metastases. Linear regression analysis was used to assess the relationship between baseline values of the apparent diffusion coefficient (ADC) and change in tumor size by day 39. RESULTS: A semi-automated segmentation scheme was critical for obtaining the most reliable ADC measurements. A statistically significant relationship between baseline ADC values and change in tumor size at day 39 was observed for minimally treated patients with metastatic liver lesions measuring 2-5cm in size (p=0.002), but not for heavily treated patients with the same tumor size range (p=0.29), or for tumors of smaller or larger sizes. ROC analysis identified a baseline threshold ADC value of 1.33µm(2)/ms as 75% sensitive and 83% specific for identifying non-responding metastases in minimally treated patients with 2-5cm liver lesions. CONCLUSION: Quantitative imaging can substantially benefit from a semi-automated segmentation scheme. Quantitative diffusion MRI results can be predictive of therapeutic outcome in selected patients with liver metastases, but not for all liver metastases, and therefore should be considered to be a restricted biomarker.


Assuntos
Neoplasias da Mama/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Feminino , Humanos , Fígado/patologia , Pessoa de Meia-Idade , Projetos Piloto , Curva ROC , Resultado do Tratamento
14.
Phys Med Biol ; 60(2): R1-75, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25564960

RESUMO

The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality.


Assuntos
Fótons/efeitos adversos , Doses de Radiação , Humanos , Aumento da Imagem/métodos , Risco
15.
Med Phys ; 41(7): 071910, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24989388

RESUMO

PURPOSE: A number of different techniques have been developed to reduce radiation dose in x-ray computed tomography (CT) imaging. In this paper, the authors will compare task-based measures of image quality of CT images reconstructed by two algorithms: conventional filtered back projection (FBP), and a new iterative reconstruction algorithm (IR). METHODS: To assess image quality, the authors used the performance of a channelized Hotelling observer acting on reconstructed image slices. The selected channels are dense difference Gaussian channels (DDOG).A body phantom and a head phantom were imaged 50 times at different dose levels to obtain the data needed to assess image quality. The phantoms consisted of uniform backgrounds with low contrast signals embedded at various locations. The tasks the observer model performed included (1) detection of a signal of known location and shape, and (2) detection and localization of a signal of known shape. The employed DDOG channels are based on the response of the human visual system. Performance was assessed using the areas under ROC curves and areas under localization ROC curves. RESULTS: For signal known exactly (SKE) and location unknown/signal shape known tasks with circular signals of different sizes and contrasts, the authors' task-based measures showed that a FBP equivalent image quality can be achieved at lower dose levels using the IR algorithm. For the SKE case, the range of dose reduction is 50%-67% (head phantom) and 68%-82% (body phantom). For the study of location unknown/signal shape known, the dose reduction range can be reached at 67%-75% for head phantom and 67%-77% for body phantom case. These results suggest that the IR images at lower dose settings can reach the same image quality when compared to full dose conventional FBP images. CONCLUSIONS: The work presented provides an objective way to quantitatively assess the image quality of a newly introduced CT IR algorithm. The performance of the model observers using the IR images was always higher than that seen using the FBP images in the authors' SKE and SKE location unknown detection tasks. To achieve a FBP-equivalent image quality in CT systems, the authors can lower the radiation dose by using this IR image reconstruction algorithm. Further studies are warranted using clinical data and human observer to validate these results for more complicated and realistic tasks.


Assuntos
Algoritmos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Área Sob a Curva , Cabeça/diagnóstico por imagem , Humanos , Modelos Teóricos , Distribuição Normal , Imagens de Fantasmas , Curva ROC , Tomografia Computadorizada por Raios X/instrumentação
16.
Proc SPIE Int Soc Opt Eng ; 9214: 921408, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26146443

RESUMO

AdaptiSPECT is a pre-clinical pinhole SPECT imaging system under final construction at the Center for Gamma-Ray Imaging. The system is designed to be able to autonomously change its imaging configuration. The system comprises 16 detectors mounted on translational stages to move radially away and towards the center of the field-of-view. The system also possesses an adaptive pinhole aperture with multiple collimator diameters and pinhole sizes, as well as the possibility to switch between multiplexed and non-multiplexed imaging configurations. In this paper, we describe the fabrication of the AdaptiSPECT pinhole aperture and its controllers.

17.
Proc SPIE Int Soc Opt Eng ; 91862014 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26236069

RESUMO

During the past two decades, researchers at the University of Arizona's Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon.

18.
Biomed Opt Express ; 5(12): 4374-86, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25574445

RESUMO

To extend our understanding of tear film dynamics for the management of dry eye disease, we propose a method to optically sense the tear film and estimate simultaneously the thicknesses of the lipid and aqueous layers. The proposed method, SDT-OCT, combines ultra-high axial resolution optical coherence tomography (OCT) and a robust estimator based on statistical decision theory (SDT) to achieve thickness measurements at the nanometer scale. Unlike conventional Fourier-domain OCT where peak detection of layers occurs in Fourier space, in SDT-OCT thickness is estimated using statistical decision theory directly on the raw spectra acquired with the OCT system. In this paper, we demonstrate in simulation that a customized OCT system tailored to ~1 µm axial point spread function (FWHM) in the corneal tissue, combined with the maximum-likelihood estimator, can estimate thicknesses of the nanometer-scale lipid and micron-scale aqueous layers of the tear film, simultaneously, with nanometer precision. This capability was validated in experiments using a physical phantom that consists of two layers of optical coatings that mimic the lipid and aqueous layers of the tear film.

19.
J Med Imaging (Bellingham) ; 1(2): 025501, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25798444

RESUMO

Ovarian cancer is particularly deadly because it is usually diagnosed after it has metastasized. We have previously identified features of ovarian cancer using optical coherence tomography (OCT) and second-harmonic generation (SHG) microscopy (targeting collagen). OCT provides an image of the ovarian microstructure while SHG provides a high-resolution map of collagen fiber bundle arrangement. Here we investigated the diagnostic potential of dual-modality OCT and SHG imaging. We conducted a fully crossed, multi-reader, multi-case study using seven human observers. Each observer classified 44 ex vivo mouse ovaries (16 normal and 28 abnormal) as normal or abnormal from OCT, SHG, and simultaneously viewed, co-registered OCT and SHG images and provided a confidence rating on a six-point scale. We determined the average receiver operating characteristic (ROC) curves, area under the ROC curves (AUC), and other quantitative figures of merit. The results show that OCT has diagnostic potential with an average AUC of 0.91 ± 0.06. The average AUC for SHG was less promising at 0.71 ± 0.13. The average AUC for simultaneous OCT and SHG was not significantly different from OCT alone, possibly due to the limited SHG field of view. The high performance of OCT and co-registered OCT and SHG warrants further investigation.

20.
Phys Med Biol ; 58(22): 8197-213, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24200954

RESUMO

Earlier work on objective assessment of image quality (OAIQ) focused largely on estimation or classification tasks in which the desired outcome of imaging is accurate diagnosis. This paper develops a general framework for assessing imaging quality on the basis of therapeutic outcomes rather than diagnostic performance. By analogy to receiver operating characteristic (ROC) curves and their variants as used in diagnostic OAIQ, the method proposed here utilizes the therapy operating characteristic or TOC curves, which are plots of the probability of tumor control versus the probability of normal-tissue complications as the overall dose level of a radiotherapy treatment is varied. The proposed figure of merit is the area under the TOC curve, denoted AUTOC. This paper reviews an earlier exposition of the theory of TOC and AUTOC, which was specific to the assessment of image-segmentation algorithms, and extends it to other applications of imaging in external-beam radiation treatment as well as in treatment with internal radioactive sources. For each application, a methodology for computing the TOC is presented. A key difference between ROC and TOC is that the latter can be defined for a single patient rather than a population of patients.


Assuntos
Radioterapia Guiada por Imagem/métodos , Humanos , Movimento , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA