Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33871609

RESUMO

Drosophila melanogaster egg production, a proxy for fecundity, is an extensively studied life-history trait with a strong genetic basis. As eggs develop into larvae and adults, space and resource constraints can put pressure on the developing offspring, leading to a decrease in viability, body size, and lifespan. Our goal was to map the genetic basis of offspring number and weight under the restriction of a standard laboratory vial. We screened 143 lines from the Drosophila Genetic Reference Panel for offspring numbers and weights to create an "offspring index" that captured the number vs weight tradeoff. We found 18 genes containing 30 variants associated with variation in the offspring index. Validation of hid, Sox21b, CG8312, and mub candidate genes using gene disruption mutants demonstrated a role in adult stage viability, while mutations in Ih and Rbp increased offspring number and increased weight, respectively. The polygenic basis of offspring number and weight, with many variants of small effect, as well as the involvement of genes with varied functional roles, support the notion of Fisher's "infinitesimal model" for this life-history trait.


Assuntos
Drosophila melanogaster , Variação Genética , Animais , Drosophila melanogaster/genética , Herança Multifatorial , Drosophila , Peso Corporal/genética
2.
J Exp Biol ; 221(Pt 6)2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29361608

RESUMO

Most animals sleep or exhibit a sleep-like state, yet the adaptive significance of this phenomenon remains unclear. Although reproductive deficits are associated with lifestyle-induced sleep deficiencies, how sleep loss affects reproductive physiology is poorly understood, even in model organisms. We aimed to bridge this mechanistic gap by impairing sleep in female fruit flies and testing its effect on egg output. We found that sleep deprivation by feeding caffeine or by mechanical perturbation resulted in decreased egg output. Transient activation of wake-promoting dopaminergic neurons decreased egg output in addition to sleep levels, thus demonstrating a direct negative impact of sleep deficit on reproductive output. Similarly, loss-of-function mutation in dopamine transporter fumin (fmn) led to both significant sleep loss and lowered fecundity. This demonstration of a direct relationship between sleep and reproductive fitness indicates a strong driving force for the evolution of sleep.


Assuntos
Drosophila melanogaster/fisiologia , Oviposição , Privação do Sono , Animais , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Feminino , Modelos Animais , Oviposição/efeitos dos fármacos , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA