Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 1056067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533176

RESUMO

Neuroinflammation and hyperexcitability have been implicated in the pathogenesis of neurodegenerative disease, and new models are required to investigate the cellular crosstalk involved in these processes. We developed an approach to generate a quantitative and reproducible triculture system that is suitable for pharmacological studies. While primary rat cells were previously grown in a coculture medium formulated to support only neurons and astrocytes, we now optimised a protocol to generate tricultures containing neurons, astrocytes and microglia by culturing in a medium designed to support all three cell types and adding exogenous microglia to cocultures. Immunocytochemistry was used to confirm the intended cell types were present. The percentage of ramified microglia in the tricultures decreases as the number of microglia present increases. Multi-electrode array recordings indicate that microglia in the triculture model suppress neuronal activity in a dose-dependent manner. Neurons in both cocultures and tricultures are responsive to the potassium channel blocker 4-aminopyridine, suggesting that neurons remained viable and functional in the triculture model. Furthermore, suppressed neuronal activity in tricultures correlates with decreased densities of dendritic spines and of the postsynaptic protein Homer1 along dendrites, indicative of a direct or indirect effect of microglia on synapse function. We thus present a functional triculture model, which, due to its more complete cellular composition, is a more relevant model than standard cocultures. The model can be used to probe glia-neuron interactions and subsequently aid the development of assays for drug discovery, using neuronal excitability as a functional endpoint.

2.
Front Cell Dev Biol ; 10: 950767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051435

RESUMO

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates many neuronal functions that are perturbed in amyotrophic lateral sclerosis (ALS) and perturbation to ER-mitochondria signaling is seen in cell and transgenic models of ALS. However, there is currently little evidence that ER-mitochondria signaling is altered in human ALS. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPI51 tethers are now known to regulate a number of ER-mitochondria signaling functions. These include delivery of Ca2+ from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and ALS spinal cords. We show that VAPB protein levels are reduced in ALS. Proximity ligation assays were then used to quantify the VAPB-PTPIP51 interaction in spinal cord motor neurons in control and ALS cases. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in ALS. Thus, we identify a new pathogenic event in post-mortem ALS.

3.
Neurobiol Dis ; 143: 105020, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682953

RESUMO

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions, many of which are perturbed in Alzheimer's disease. Moreover, damage to ER-mitochondria signaling is seen in cell and transgenic models of Alzheimer's disease. However, as yet there is little evidence that ER-mitochondria signaling is altered in human Alzheimer's disease brains. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPIP51 tethers are now known to regulate a number of ER-mitochondria signaling functions including delivery of Ca2+from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and Alzheimer's disease brains. Quantification of ER-mitochondria signaling proteins by immunoblotting revealed loss of VAPB and PTPIP51 in cortex but not cerebellum at end-stage Alzheimer's disease. Proximity ligation assays were used to quantify the VAPB-PTPIP51 interaction in temporal cortex pyramidal neurons and cerebellar Purkinje cell neurons in control, Braak stage III-IV (early/mid-dementia) and Braak stage VI (severe dementia) cases. Pyramidal neurons degenerate in Alzheimer's disease whereas Purkinje cells are less affected. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in Braak stage III-IV pyramidal but not Purkinje cell neurons. Thus, we identify a new pathogenic event in post-mortem Alzheimer's disease brains. The implications of our findings for Alzheimer's disease mechanisms are discussed.


Assuntos
Doença de Alzheimer/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Lobo Temporal/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Autopsia , Retículo Endoplasmático/patologia , Feminino , Humanos , Masculino , Mitocôndrias/patologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Lobo Temporal/patologia
4.
Brain Commun ; 2(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500121

RESUMO

Polymorphisms associated with BIN1 confer the second greatest risk for developing late onset Alzheimer's disease. The biological consequences of this genetic variation are not fully understood, however BIN1 is a binding partner for tau. Tau is normally a highly soluble cytoplasmic protein, but in Alzheimer's disease tau is abnormally phosphorylated and accumulates at synapses to exert synaptotoxicity. The purpose of this study was to determine if alterations to BIN1 and tau in Alzheimer's disease promote the damaging redistribution of tau to synapses, as a mechanism by which BIN1 polymorphisms may increase risk of developing Alzheimer's disease. We show that BIN1 is lost from the cytoplasmic fraction of Alzheimer's disease cortex, and this is accompanied by the progressive mislocalization of phosphorylated tau to synapses. We confirmed proline 216 in tau as critical for tau interaction with the BIN1-SH3 domain and show that phosphorylation of tau disrupts this binding, suggesting that tau phosphorylation in Alzheimer's disease disrupts tau-BIN1 associations. Moreover, we show that BIN1 knockdown in rat primary neurons to mimic BIN1 loss in Alzheimer's disease brain, causes the damaging accumulation of phosphorylated tau at synapses and alterations in dendritic spine morphology. We also observed reduced release of tau from neurons upon BIN1 silencing, suggesting that BIN1 loss disrupts the function of extracellular tau. Together, these data indicate that polymorphisms associated with BIN1 that reduce BIN1 protein levels in the brain likely act synergistically with increased tau phosphorylation to increase risk of Alzheimer's disease by disrupting cytoplasmic tau-BIN1 interactions, promoting the damaging mis-sorting of phosphorylated tau to synapses to alter synapse structure, and by reducing the release of physiological forms of tau to disrupt tau function.

5.
Acta Neuropathol Commun ; 7(1): 200, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31806024

RESUMO

Damage to axonal transport is an early pathogenic event in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo since disruption to APP transport promotes amyloidogenic processing of APP. Moreover, altered APP processing itself disrupts axonal transport. The mechanisms that regulate axonal transport of APP are therefore directly relevant to Alzheimer's disease pathogenesis. APP is transported anterogradely through axons on kinesin-1 motors and one route for this transport involves calsyntenin-1, a type-1 membrane spanning protein that acts as a direct ligand for kinesin-1 light chains (KLCs). Thus, loss of calsyntenin-1 disrupts APP axonal transport and promotes amyloidogenic processing of APP. Phosphorylation of KLC1 on serine-460 has been shown to reduce anterograde axonal transport of calsyntenin-1 by inhibiting the KLC1-calsyntenin-1 interaction. Here we demonstrate that in Alzheimer's disease frontal cortex, KLC1 levels are reduced and the relative levels of KLC1 serine-460 phosphorylation are increased; these changes occur relatively early in the disease process. We also show that a KLC1 serine-460 phosphomimetic mutant inhibits axonal transport of APP in both mammalian neurons in culture and in Drosophila neurons in vivo. Finally, we demonstrate that expression of the KLC1 serine-460 phosphomimetic mutant promotes amyloidogenic processing of APP. Together, these results suggest that increased KLC1 serine-460 phosphorylation contributes to Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Transporte Axonal/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Serina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/análise , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas de Drosophila , Drosophila melanogaster , Feminino , Lobo Frontal/química , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Células HEK293 , Humanos , Cinesinas , Masculino , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Fosforilação/fisiologia , Ratos , Serina/análise , Serina/genética
6.
Acta Neuropathol Commun ; 7(1): 73, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068217

RESUMO

Cyclin dependent kinase-5 (cdk5)/p35 is a neuronal kinase that regulates key axonal and synaptic functions but the mechanisms by which it is transported to these locations are unknown. Lemur tyrosine kinase-2 (LMTK2) is a binding partner for p35 and here we show that LMTK2 also interacts with kinesin-1 light chains (KLC1/2). Binding to KLC1/2 involves a C-terminal tryptophan/aspartate (WD) motif in LMTK2 and the tetratricopeptide repeat (TPR) domains in KLC1/2, and this interaction facilitates axonal transport of LMTK2. Thus, siRNA loss of KLC1 or mutation of the WD motif disrupts axonal transport of LMTK2. We also show that LMTK2 facilitates the formation of a complex containing KLC1 and p35 and that siRNA loss of LMTK2 disrupts axonal transport of both p35 and cdk5. Finally, we show that LMTK2 levels are reduced in Alzheimer's disease brains. Damage to axonal transport and altered cdk5/p35 are pathogenic features of Alzheimer's disease. Thus, LMTK2 binds to KLC1 to direct axonal transport of p35 and its loss may contribute to Alzheimer's disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Transporte Axonal , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células HEK293 , Humanos , Cinesinas , Neurônios/metabolismo , Ligação Proteica , Ratos
7.
Acta Neuropathol Commun ; 7(1): 35, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841933

RESUMO

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions. This signaling involves close physical contacts between the two organelles that are mediated by "tethering proteins" that function to recruit regions of ER to the mitochondrial surface. The ER protein, vesicle-associated membrane protein-associated protein B (VAPB) and the mitochondrial membrane protein, protein tyrosine phosphatase interacting protein-51 (PTPIP51), interact to form one such tether. Recently, damage to ER-mitochondria signaling involving disruption of the VAPB-PTPIP51 tethers has been linked to the pathogenic process in Parkinson's disease, fronto-temporal dementia (FTD) and related amyotrophic lateral sclerosis (ALS). Loss of neuronal synaptic function is a key feature of Parkinson's disease and FTD/ALS but the roles that ER-mitochondria signaling and the VAPB-PTPIP51 tethers play in synaptic function are not known. Here, we demonstrate that the VAPB-PTPIP51 tethers regulate synaptic activity. VAPB and PTPIP51 localise and form contacts at synapses, and stimulating neuronal activity increases ER-mitochondria contacts and the VAPB-PTPIP51 interaction. Moreover, siRNA loss of VAPB or PTPIP51 perturbs synaptic function and dendritic spine morphology. Our results reveal a new role for the VAPB-PTPIP51 tethers in neurons and suggest that damage to ER-mitochondria signaling contributes to synaptic dysfunction in Parkinson's disease and FTD/ALS.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Retículo Endoplasmático/química , Hipocampo/química , Hipocampo/metabolismo , Proteínas Interatuantes com Canais de Kv/análise , Proteínas Mitocondriais/análise , Neurônios/química , Proteínas Tirosina Fosfatases/análise , Ratos , Sinapses/química
8.
Cell Death Dis ; 9(3): 327, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491392

RESUMO

Fronto-temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two related and incurable neurodegenerative diseases. Features of these diseases include pathological protein inclusions in affected neurons with TAR DNA-binding protein 43 (TDP-43), dipeptide repeat proteins derived from the C9ORF72 gene, and fused in sarcoma (FUS) representing major constituent proteins in these inclusions. Mutations in C9ORF72 and the genes encoding TDP-43 and FUS cause familial forms of FTD/ALS which provides evidence to link the pathology and genetics of these diseases. A large number of seemingly disparate physiological functions are damaged in FTD/ALS. However, many of these damaged functions are regulated by signalling between the endoplasmic reticulum and mitochondria, and this has stimulated investigations into the role of endoplasmic reticulum-mitochondria signalling in FTD/ALS disease processes. Here, we review progress on this topic.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Demência/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência/genética , Retículo Endoplasmático/genética , Humanos , Mitocôndrias/genética , Transdução de Sinais
9.
Acta Neuropathol Commun ; 4(1): 49, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27193083

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by neuropathological deposits of amyloid plaques and neurofibrillary tangles comprised of ß-amyloid and tau protein, respectively. In AD, tau becomes abnormally phosphorylated and aggregates to form intracellular deposits. However, the mechanisms by which tau exerts neurotoxicity in disease remain unclear. Recent studies have suggested that the presence of tau at synapses may indicate a role in neuronal signalling, which could be disrupted in pathological conditions. The non-receptor-associated tyrosine kinase fyn is located at the dendrite in neurons, where it was recently shown to interact with tau to stabilise receptor complexes at the post-synaptic density. Fyn also co-localises with tau in a proportion of neurons containing tau tangles in AD and fyn is also a tau kinase. Hence, tau-fyn interactions could play a pathogenic role in AD. Here we report the identification of critical proline residues, Pro213, Pro216, and Pro219, located within the fifth and sixth Pro-X-X-Pro motifs in the proline-rich region of tau, that are important for its binding to fyn. These residues in tau are flanked by numerous phosphorylation sites and therefore we investigated the relationship between fyn and the degree of tau phosphorylation in human post-mortem brain tissue. We found no difference in the amount of fyn present in control and AD brain. Notably, however, there was a significant correlation between fyn and phosphorylated tau at specific phospho-epitopes in control, but not in AD brain. Our results suggest that the pathological mechanisms underlying AD, that result in increased tau phosphorylation, may disrupt the physiological relationship between tau phosphorylation and fyn.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Motivos de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células CHO , Cricetulus , Escherichia coli , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Ligação Proteica , Domínios Proteicos
10.
Trends Neurosci ; 39(3): 146-157, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26899735

RESUMO

Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or 'MAM'). Moreover, several recent studies have shown that disturbances to ER-mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Retículo Endoplasmático/ultraestrutura , Humanos , Mitocôndrias/ultraestrutura , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
11.
Neurobiol Dis ; 85: 1-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459111

RESUMO

Expression of the frontotemporal dementia-related tau mutation, P301L, at physiological levels in adult mouse brain (KI-P301L mice) results in overt hypophosphorylation of tau and age-dependent alterations in axonal mitochondrial transport in peripheral nerves. To determine the effects of P301L tau expression in the central nervous system, we examined the kinetics of mitochondrial axonal transport and tau phosphorylation in primary cortical neurons from P301L knock-in (KI-P301L) mice. We observed a significant 50% reduction in the number of mitochondria in the axons of cortical neurons cultured from KI-P301L mice compared to wild-type neurons. Expression of murine P301L tau did not change the speed, direction of travel or likelihood of movement of mitochondria. Notably, the angle that defines the orientation of the mitochondria in the axon, and the volume of individual moving mitochondria, were significantly increased in neurons expressing P301L tau. We found that murine tau phosphorylation in KI-P301L mouse neurons was diminished and the ability of P301L tau to bind to microtubules was also reduced compared to tau in wild-type neurons. The P301L mutation did not influence the ability of murine tau to associate with membranes in cortical neurons or in adult mouse brain. We conclude that P301L tau is associated with mitochondrial changes and causes an early reduction in murine tau phosphorylation in neurons coupled with impaired microtubule binding of tau. These results support the association of mutant tau with detrimental effects on mitochondria and will be of significance for the pathogenesis of tauopathies.


Assuntos
Axônios/metabolismo , Mitocôndrias/metabolismo , Proteínas tau/metabolismo , Animais , Axônios/patologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Citosol/metabolismo , Citosol/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/metabolismo , Mitocôndrias/patologia , Mutação , Fosforilação , Ratos , Proteínas tau/genética
12.
J Alzheimers Dis ; 40 Suppl 1: S37-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595196

RESUMO

Tau has a well-established role as a microtubule-associated protein, in which it stabilizes the neuronal cytoskeleton. This function of tau is influenced by tau phosphorylation state, which is significantly increased in Alzheimer's disease and related tauopathies. Disruptions to the cytoskeleton in disease-affected neurons include reduced length and numbers of stable microtubules, and their diminished stability is associated with increased tau phosphorylation in disease. Tau is also localized in the nucleus and plasma membrane of neurons, where it could have roles in DNA repair and cell signaling. Most recently, potential roles for extracellular tau have been highlighted. The release of tau from neurons is a physiological process that can be regulated by neuronal activity and extracellular tau may play a role in inter-neuronal signaling. In addition, recent studies have suggested that the misfolding of tau in diseased brain leads to abnormal conformations of tau that can be taken up by neighboring neurons. Such a mechanism may be responsible for the apparent prion-like spreading of tau pathology through the brain, which occurs in parallel with clinical progression in the tauopathies. The relationship between tau localization in neurons, tau release, and tau uptake remains to be established, as does the function of extracellular tau. More research is needed to identify disease mechanisms that drive the release and propagation of pathogenic tau and to determine the impact of extracellular tau on cognitive decline in neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Endocitose/fisiologia , Humanos , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Fosforilação , Transdução de Sinais/fisiologia , Tauopatias/patologia
13.
EMBO Rep ; 14(4): 389-94, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23412472

RESUMO

Propagation of tau pathology is linked with progressive neurodegeneration, but the mechanism underlying trans-synaptic spread of tau is unknown. We show that stimulation of neuronal activity, or AMPA receptor activation, induces tau release from healthy, mature cortical neurons. Notably, phosphorylation of extracellular tau appears reduced in comparison with intracellular tau. We also find that AMPA-induced release of tau is calcium-dependent. Blocking pre-synaptic vesicle release by tetanus toxin and inhibiting neuronal activity with tetrodotoxin both significantly impair AMPA-mediated tau release. Tau secretion is therefore a regulatable process, dysregulation of which could lead to the spread of tau pathology in disease.


Assuntos
Neurônios/metabolismo , Proteínas tau/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Córtex Cerebral/citologia , Potássio/fisiologia , Cultura Primária de Células , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA