Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(20): 6205-6217, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642718

RESUMO

Naringin found in citrus fruits is a flavanone glycoside with numerous biological activities. However, the bitterness, low water-solubility, and low bioavailability of naringin are the main issues limiting its use in the pharmaceutical and nutraceutical industries. Herein, a glucansucrase from isolated Leuconostoc citreum NY87 was used for trans-α-glucosylattion of naringin by using sucrose as substrate. Two naringin glucosides (O-α-D-glucosyl-(1'''' → 6″) naringin (compound 1) and 4'-O-α-D-glucosyl naringin (compound 2)) were purified and determined their structures by nuclear magnetic resonance. The optimization condition for the synthesis of compound 1 was obtained at 10 mM naringin, 200 mM sucrose, and 337.5 mU/mL at 28 °C for 24 h by response surface methodology method. Compound 1 and compound 2 showed 1896- and 3272 times higher water solubility than naringin. Furthermore, the bitterness via the human bitter taste receptor TAS2R39 displayed that compound 1 was reduced 2.9 times bitterness compared with naringin, while compound 2 did not express bitterness at 1 mM. Both compounds expressed higher neuroprotective effects than naringin on human neuroblastoma SH-SY5Y cells treated with 5 mM scopolamine based on cell viability and cortisol content. Compound 1 reduced acetylcholinesterase activity more than naringin and compound 2. These results indicate that naringin glucosides could be utilized as functional material in the nutraceutical and pharmaceutical industries. KEY POINTS: • A novel O-α-D-glucosyl-(1 → 6) naringin was synthesized using glucansucrase from L. citreum NY87. • Naringin glucosides improved water-solubility and neuroprotective effects on SH-SY5Y cells. • Naringin glucosides showed a decrease in bitterness on bitter taste receptor 39.


Assuntos
Flavanonas , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Solubilidade , Acetilcolinesterase , Flavanonas/farmacologia , Sacarose/química , Glucosídeos/farmacologia , Glucosídeos/química , Água , Receptores de Superfície Celular
2.
Food Sci Anim Resour ; 43(4): 612-624, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37484004

RESUMO

The gut-brain axis encompasses a bidirectional communication pathway between the gastrointestinal microbiota and the central nervous system. There is some evidence to suggest that probiotics may have a positive effect on cognitive function, but more research is needed before any definitive conclusions can be drawn. Inflammation-induced by lipopolysaccharide (LPS) may affect cognitive function. To confirm the effect of probiotics on oxidative stress induced by LPS, the relative expression of antioxidant factors was confirmed, and it was revealed that the administration of probiotics had a positive effect on the expression of antioxidant-related factors. After oral administration of probiotics to mice, an intentional inflammatory response was induced through LPS i.p., and the effect on cognition was confirmed by the Morris water maze test, nitric oxide (NO) assay, and interleukin (IL)-1ß enzyme-linked immunosorbent assay performed. Experimental results, levels of NO and IL-1 ß in the blood of LPS i.p. mice were significantly decreased, and cognitive evaluation using the Morris water maze test showed significant values in the latency and target quadrant percentages in the group that received probiotics. This proves that intake of these probiotics improves cognitive impairment and memory loss through anti-inflammatory and antioxidant mechanisms.

3.
J Microbiol Biotechnol ; 33(2): 203-210, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36655284

RESUMO

Taste is classified into five types, each of which has evolved to play its respective role in mammalian survival. Sour taste is one of the important ways to judge whether food has gone bad, and the sour taste receptor (PKD2L1) is the gene behind it. Here, we investigated whether L-pyroglutamic acid interacts with sour taste receptors through electrophysiology and mutation experiments using Xenopus oocytes. R299 of hPKD2L1 was revealed to be involved in L-pyroglutamic acid binding in a concentration-dependent manner. As a result, it is possible to objectify the change in signal intensity according to the concentration of L-pyroglutamic acid, an active ingredient involved in the taste of kimchi, at the molecular level. Since the taste of other ingredients can also be measured with the method used in this experiment, it is expected that an objective database of taste can be created.


Assuntos
Papilas Gustativas , Paladar , Animais , Humanos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Receptores de Superfície Celular/genética , Paladar/genética , Papilas Gustativas/metabolismo , Xenopus laevis
4.
Eur J Pharmacol ; 939: 175454, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549498

RESUMO

The antidepressant-like activity of (+)-catharanthine and (-)-18-methoxycoronaridine [(-)-18-MC] was studied in male and female mice using forced swim (FST) and tail suspension tests (TST). The underlying molecular mechanism was assessed by electrophysiological, radioligand, and functional experiments. The FST results showed that acute administration (40 mg/kg) of (+)-catharanthine or (-)-18-MC induces similar antidepressant-like activity in male and female mice at 1 h and 24 h, whereas the TST results showed a lower effect for (-)-18-MC at 24 h. Repeated treatment at lower dose (20 mg/kg) augmented the efficacy of both congeners. The FST results showed that (-)-18-MC reduces immobility and increases swimming times without changing climbing behavior, whereas (+)-catharanthine reduces immobility time, increases swimming times more markedly, and increases climbing behavior. To investigate the contribution of the serotonin and norepinephrine transporters in the antidepressant effects of (+)-catharanthine and (-)-18-MC, we conducted in vitro radioligand and functional studies. Results obtained demonstrated that (+)-catharanthine inhibits norepinephrine transporter with higher potency/affinity than that for (-)-18-MC, whereas both congeners inhibit serotonin transporter with similar potency/affinity. Moreover, whereas no congener activated/inhibited/potentiated the function of serotonin receptor 3A or serotonin receptor 3AB, both increased serotonin receptor 3A receptor desensitization. Depletion of serotonin decreased the antidepressant-like activity of both congeners, whereas norepinephrine depletion only decreased (+)-catharanthine's activity. Our study shows that coronaridine congeners induce antidepressant-like activity in a dose- and time-dependent, and sex-independent, manner. The antidepressant-like property of both compounds involves serotonin transporter inhibition, without directly activating/inhibiting serotonin receptors 3, while (+)-catharanthine also mobilizes norepinephrinergic neurotransmission.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Camundongos , Masculino , Feminino , Animais , Serotonina/fisiologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Natação , Transmissão Sináptica , Norepinefrina , Elevação dos Membros Posteriores , Depressão/tratamento farmacológico
5.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203390

RESUMO

Odorant molecules interact with odorant receptors (ORs) lining the pores on the surface of the sensilla on an insect's antennae and maxillary palps. This interaction triggers an electrical signal that is transmitted to the insect's nervous system, thereby influencing its behavior. Orco, an OR coreceptor, is crucial for olfactory transduction, as it possesses a conserved sequence across the insect lineage. In this study, we focused on 2,4-di-tert-butylphenol (DTBP), a single substance present in acetic acid bacteria culture media. We applied DTBP to oocytes expressing various Drosophila melanogaster odor receptors and performed electrophysiology experiments. After confirming the activation of DTBP on the receptor, the binding site was confirmed through point mutations. Our findings confirmed that DTBP interacts with the insect Orco subunit. The 2-heptanone, octanol, and 2-hexanol were not activated for the Orco homomeric channel, but DTBP was activated, and the EC50 value was 13.4 ± 3.0 µM. Point mutations were performed and among them, when the W146 residue changed to alanine, the Emax value was changed from 1.0 ± 0 in the wild type to 0.0 ± 0 in the mutant type, and all activity was decreased. Specifically, DTBP interacted with the W146 residue of the Orco subunit, and the activation manner was concentration-dependent and voltage-independent. This molecular-level analysis provides the basis for novel strategies to minimize pest damage. DTBP, with its specific binding to the Orco subunit, shows promise as a potential pest controller that can exclusively target insects.


Assuntos
Ácido Acético , Cicloexanos , Drosophila melanogaster , Fenóis , Animais , Drosophila melanogaster/genética , Alanina
6.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430653

RESUMO

Sleep is an essential component of quality of life. The majority of people experience sleep problems that impact their quality of life. Melatonin is currently a representative sleep aid. However, it is classified as a prescription drug in most countries, and consumers cannot purchase it to improve their sleep. This sleep induction experiment in mice aimed to identify a natural combination product (NCP) that can create synergistic sleep-promoting effects. Based on the mechanism of action of sleep, we investigated whether phenomenological indicators of sleep quality change according to the intake of NCP. The sleep onset and sleep time of the mice that consumed the NCP found by this study were improved compared to the existing sleep aids. The mean melatonin level in the blood increased by 197% compared to the control. To our knowledge, this is the first study to demonstrate that Rosa multiflora Thunb. (Yeongsil) can promote sleep similarly to Zizyphus jujuba Miller (Sanjoin). The results indicate a preclinical study of NCPs containing Rosa multiflora Thunb and Zizyphus jujuba Miller developed by us showed significant differences in sleep incubation and duration depending on melatonin concentrations. Our results also suggest that increased melatonin concentrations in the blood are likely to improve sleep quality, especially regarding incubation periods.


Assuntos
Anestesia , Melatonina , Rosa , Ziziphus , Camundongos , Animais , Melatonina/farmacologia , Qualidade do Sono , Qualidade de Vida
7.
Antioxidants (Basel) ; 11(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36009192

RESUMO

(1) Background: The N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory currents leading to depolarization. Postsynaptic NMDARs are ionotropic glutamate receptors that mediate excitatory glutamate or glycine signaling in the CNS and play a primary role in long-term potentiation, which is a major form of use-dependent synaptic plasticity. The overstimulation of NMDARs mediates excessive Ca2+ influx to postsynaptic neurons and facilitates more production of ROS, which induces neuronal apoptosis. (2) Methods: To confirm the induced inward currents by the coapplication of glutamate and ergotamine on NMDARs, a two-electrode voltage clamp (TEVC) was conducted. The ergotamine-mediated inhibitory effects of NR1a/NR2A subunits were explored among four different kinds of recombinant NMDA subunits. In silico docking modeling was performed to confirm the main binding site of ergotamine. (3) Results: The ergotamine-mediated inhibitory effect on the NR1a/NR2A subunits has concentration-dependent, reversible, and voltage-independent properties. The major binding sites were V169 of the NR1a subunit and N466 of the NR2A subunit. (4) Conclusion: Ergotamine effectively inhibited NR1a/NR2A subunit among the subtypes of NMDAR. This inhibition effect can prevent excessive Ca2+ influx, which prevents neuronal death.

8.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008969

RESUMO

Monoamine serotonin is a major neurotransmitter that acts on a wide range of central nervous system and peripheral nervous system functions and is known to have a role in various processes. Recently, it has been found that 5-HT is involved in cognitive and memory functions through interaction with cholinergic pathways. The natural flavonoid kaempferol (KAE) extracted from Cudrania tricuspidata is a secondary metabolite of the plant. Recently studies have confirmed that KAE possesses a neuroprotective effect because of its strong antioxidant activity. It has been confirmed that KAE is involved in the serotonergic pathway through an in vivo test. However, these results need to be confirmed at the molecular level, because the exact mechanism that is involved in such effects of KAE has not yet been elucidated. Therefore, the objective of this study is to confirm the interaction of KAE with 5-HT3A through electrophysiological studies at the molecular level using KAE extracted from Cudrania tricuspidata. This study confirmed the interaction between 5-HT3A and KAE at the molecular level. KAE inhibited 5-HT3A receptors in a concentration-dependent and voltage-independent manner. Site-directed mutagenesis and molecular-docking studies confirmed that the binding sites D177 and F199 are the major binding sites of human 5-HT3A receptors of KAE.


Assuntos
Quempferóis/farmacologia , Triterpenos Pentacíclicos/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Humanos , Quempferóis/química , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Triterpenos Pentacíclicos/química , Ligação Proteica , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/genética , Antagonistas do Receptor 5-HT3 de Serotonina/química , Relação Estrutura-Atividade
9.
Molecules ; 26(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062829

RESUMO

Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3ß4 nicotinic acetylcholine receptors (α3ß4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3ß4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the ß4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor's ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative.


Assuntos
Acetilcolina/metabolismo , Triterpenos Pentacíclicos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação , Bovinos , Eletrofisiologia , Ligantes , Simulação de Acoplamento Molecular , Mutagênese , Mutação , Oócitos/citologia , Oócitos/metabolismo , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Sementes , Sono , Distúrbios do Início e da Manutenção do Sono/metabolismo , Transcrição Gênica , Triterpenos/farmacologia , Xenopus laevis , Ziziphus , Ácido gama-Aminobutírico/metabolismo , Ácido Betulínico
10.
Eur J Pharmacol ; 906: 174220, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34081905

RESUMO

Schisandrin C (Sch C) is one of the main components of Schisandra chinensis (Schisandra). Since the olden times, Schisandra has been used as a traditional herbal medicine in Asia. Recent studies have shown that Schisandra is effective against irritable bowel syndrome (IBS) in an animal model and affects IBS through the 5-HT3A pathway in the IBS rat model. However, there lacks fundamental research on the interaction of specific components of Schisandra with the 5-HT3A receptor for the treatment of IBS. We hypothesized that a component of Schisandra binds to the 5-HT3A receptor and identified Sch C via a screening work using two electrode-voltage clamps (TEVC). Thus, we aimed to elucidate the neuropharmacological actions between Sch C and the 5-HT3A receptor at molecular and cellular levels. Co-treatment of Sch C with 5-HT inhibited I5-HT in a reversible, concentrate-dependent, like-competition, and voltage-independent manner, and IC50 values of Sch C. Besides, the main binding positions of Sch C were identified through 3D modeling and point mutation were V225A and V288Y on 5-HT3A receptor. Thus, we suggest the potential of Sch C in treating IBS in a manner that suppresses excessive neuronal serotonin signaling in the synapse of sensory neurons and enterochromaffin (EC) cells. In conclusion, the results demonstrate the mechanism of interaction between Sch C and 5-HT3A receptor and reveal Sch C as a novel antagonist.


Assuntos
Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Animais , Ciclo-Octanos/farmacologia , Ciclo-Octanos/uso terapêutico , Células Enterocromafins/efeitos dos fármacos , Células Enterocromafins/metabolismo , Humanos , Concentração Inibidora 50 , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/inervação , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/patologia , Lignanas/uso terapêutico , Simulação de Acoplamento Molecular , Oócitos , Técnicas de Patch-Clamp , Compostos Policíclicos/uso terapêutico , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/uso terapêutico , Xenopus laevis
11.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668306

RESUMO

Irritable bowel syndrome (IBS) is a chronic disease that causes abdominal pain and an imbalance of defecation patterns due to gastrointestinal dysfunction. The cause of IBS remains unclear, but intestinal-brain axis problems and neurotransmitters have been suggested as factors. In this study, chanoclavine, which has a ring structure similar to 5-hydroxytryptamine (5-HT), showed an interaction with the 5-HT3A receptor to regulate IBS. Although its derivatives are known to be involved in neurotransmitter receptors, the molecular physiological mechanism of the interaction between chanoclavine and the 5-HT3A receptor is unknown. Electrophysiological experiments were conducted using a two-electrode voltage-clamp analysis to observe the inhibitory effects of chanoclavine on Xenopus oocytes in which the h5-HT3A receptor was expressed. The co-application of chanoclavine and 5-HT resulted in concentration-dependent, reversible, voltage-independent, and competitive inhibition. The 5-HT3A response induced by 5-HT was blocked by chanoclavine with half-maximal inhibitory response concentration (IC50) values of 107.2 µM. Docking studies suggested that chanoclavine was positioned close F130 and N138 in the 5-HT3A receptor-binding site. The double mutation of F130A and N138A significantly attenuated the interaction of chanoclavine compared to a single mutation or the wild type. These data suggest that F130 and N138 are important sites for ligand binding and activity. Chanoclavine and ergonovine have different effects. Asparagine, the 130th amino acid sequence of the 5-HT3A receptor, and phenylalanine, the 138th, are important in the role of binding chanoclavine, but ergonovine has no interaction with any amino acid sequence of the 5-HT3A receptor. The results of the electrophysiological studies and of in silico simulation showed that chanoclavine has the potential to inhibit the hypergastric stimulation of the gut by inhibiting the stimulation of signal transduction through 5-HT3A receptor stimulation. These findings suggest chanoclavine as a potential antiemetic agent for excessive gut stimulation and offer insight into the mechanisms of 5-HT3A receptor inhibition.


Assuntos
Ergolinas/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Relação Dose-Resposta a Droga , Ergolinas/química , Ergonovina/química , Ergonovina/farmacologia , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
Antioxidants (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052566

RESUMO

Transient receptor potential vanilloid member 1 (TRPV1) is activated in response to capsaicin, protons, temperature, and free reactive oxygen species (ROS) released from inflammatory molecules after exposure to harmful stimuli. The expression level of TRPV1 is elevated in the dorsal root ganglion, and its activation through capsaicin and ROS mediates neuropathic pain in mice. Its expression is high in peripheral and central nervous systems. Although pain is a response evolved for survival, many studies have been conducted to develop analgesics, but no clear results have been reported. Here, we found that naringin selectively inhibited capsaicin-stimulated inward currents in Xenopus oocytes using a two-electrode voltage clamp. The results of this study showed that naringin has an IC50 value of 33.3 µM on TRPV1. The amino acid residues D471 and N628 of TRPV1 were involved in its binding to naringin. Our study bridged the gap between the pain suppression effect of TRPV1 and the preventive effect of naringin on neuropathic pain and oxidation. Naringin had the same characteristics as a model selective antagonist, which is claimed to be ideal for the development of analgesics targeting TRPV1. Thus, this study suggests the applicability of naringin as a novel analgesic candidate through antioxidative and analgesic effects of naringin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA