Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725862

RESUMO

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Mitocôndrias , Piroptose , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Camundongos Nus , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
2.
Nutr Diabetes ; 14(1): 18, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609395

RESUMO

BACKGROUND: The effectiveness of ketogenic diet (KD) in ameliorating fatty liver has been established, although its mechanism is under investigation. Fibroblast growth factor 21 (FGF21) positively regulates obesity-associated metabolic disorders and is elevated by KD. FGF21 conventionally initiates its intracellular signaling via receptor ß-klotho (KLB). However, the mechanistic role of FGF21-KLB signaling for KD-ameliorated fatty liver remains unknown. This study aimed to delineate the critical role of FGF21 signaling in the ameliorative effects of KD on hepatic steatosis. METHODS: Eight-week-old C57BL/6 J mice were fed a chow diet (CD), a high-fat diet (HFD), or a KD for 16 weeks. Adeno-associated virus-mediated liver-specific KLB knockdown mice and control mice were fed a KD for 16 weeks. Phenotypic assessments were conducted during and after the intervention. We investigated the mechanism underlying KD-alleviated hepatic steatosis using multi-omics and validated the expression of key genes. RESULTS: KD improved hepatic steatosis by upregulating fatty acid oxidation and downregulating lipogenesis. Transcriptional analysis revealed that KD dramatically activated FGF21 pathway, including KLB and fibroblast growth factor receptor 1 (FGFR1). Impairing liver FGF21 signaling via KLB knockdown diminished the beneficial effects of KD on ameliorating fatty liver, insulin resistance, and regulating lipid metabolism. CONCLUSION: KD demonstrates beneficial effects on diet-induced metabolic disorders, particularly on hepatic steatosis. Liver FGF21-KLB signaling plays a critical role in the KD-induced amelioration of hepatic steatosis.


Assuntos
Dieta Cetogênica , Fígado Gorduroso , Fatores de Crescimento de Fibroblastos , Resistência à Insulina , Animais , Camundongos , Camundongos Endogâmicos C57BL
3.
Biomaterials ; 289: 121757, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058028

RESUMO

The alternations in the hypoxic and immune microenvironment are closely related to the therapeutic effect and prognosis of oral squamous cell carcinoma (OSCC). Herein, a new nanocomposite, TiO2@Ru@siRNA is constructed from a ruthenium-based photosensitizer (Ru) modified-TiO2 nanoparticles (NPs) loaded with siRNA of hypoxia-inducible factor-1α (HIF-1α). Under visible light irradiation, TiO2@Ru@siRNA can elicit both Type I and Type II photodynamic effects, which causes lysosomal damage, HIF-1α gene silencing, and OSCC cell elimination efficiently. As a consequence of hypoxia relief and pyroptosis induction, TiO2@Ru@siRNA reshapes the immune microenvironment by downregulation of key immunosuppressive factors, upregulation of immune cytokines, and activation of CD4+ and CD8+ T lymphocytes. Furthermore, patient-derived xenograft (PDX) and rat oral experimental carcinogenesis models prove that TiO2@Ru@siRNA-mediated photodynamic therapy significantly inhibits the tumor growth and progression, and markedly enhances cancer immunity. In all, this study presents an effective hypoxia-adaptive photo-immunotherapeutic nanosystem with great potential for OSCC prevention and treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nanopartículas , Rutênio , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Citocinas , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Imunoterapia , Nanopartículas Metálicas , Neoplasias Bucais/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , RNA Interferente Pequeno/genética , Ratos , Rutênio/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Titânio , Microambiente Tumoral
4.
Cancer Commun (Lond) ; 42(5): 447-470, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35434944

RESUMO

BACKGROUND: Lymphatic metastasis has been associated with poor prognosis in bladder cancer patients with limited therapeutic options. Emerging evidence shows that heat shock factor 1 (HSF1) drives diversified transcriptome to promote tumor growth and serves as a promising therapeutic target. However, the roles of HSF1 in lymphatic metastasis remain largely unknown. Herein, we aimed to illustrate the clinical roles and mechanisms of HSF1 in the lymphatic metastasis of bladder cancer and explore its therapeutic potential. METHODS: We screened the most relevant gene to lymphatic metastasis among overexpressed heat shock factors (HSFs) and heat shock proteins (HSPs), and analyzed its clinical relevance in three cohorts. Functional in vitro and in vivo assays were performed in HSF1-silenced and -regained models. We also used Co-immunoprecipitation to identify the binding proteins of HSF1 and chromatin immunoprecipitation and dual-luciferase reporter assays to investigate the transcriptional program directed by HSF1. The pharmacological inhibitor of HSF1, KRIBB11, was evaluated in popliteal lymph node metastasis models and patient-derived xenograft models of bladder cancer. RESULTS: HSF1 expression was positively associated with lymphatic metastasis status, tumor stage, advanced grade, and poor prognosis of bladder cancer. Importantly, HSF1 enhanced the epithelial-mesenchymal transition (EMT) of cancer cells in primary tumor to initiate metastasis, proliferation of cancer cells in lymph nodes, and macrophages infiltration to facilitate multistep lymphatic metastasis. Mechanistically, HSF1 interacted with protein arginine methyltransferase 5 (PRMT5) and jointly induced the monomethylation of histone H3 at arginine 2 (H3R2me1) and symmetric dimethylation of histone H3 at arginine 2 (H3R2me2s). This recruited the WD repeat domain 5 (WDR5)/mixed-lineage leukemia (MLL) complex to increase the trimethylation of histone H3 at lysine 4 (H3K4me3); resulting in upregulation of lymphoid enhancer-binding factor 1 (LEF1), matrix metallopeptidase 9 (MMP9), C-C motif chemokine ligand 20 (CCL20), and E2F transcription factor 2 (E2F2). Application of KRIBB11 significantly inhibited the lymphatic metastasis of bladder cancer with no significant toxicity. CONCLUSION: Our findings reveal a novel transcriptional program directed by the HSF1-PRMT5-WDR5 axis during the multistep process of lymphatic metastasis in bladder cancer. Targeting HSF1 could be a multipotent and promising therapeutic strategy for bladder cancer patients with lymphatic metastasis.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Histonas , Neoplasias da Bexiga Urinária , Arginina/metabolismo , Linhagem Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metástase Linfática , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias da Bexiga Urinária/patologia
5.
Cell Mol Life Sci ; 79(3): 135, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179655

RESUMO

Oxaliplatin is the first-line regime for advanced gastric cancer treatment, while its resistance is a major problem that leads to the failure of clinical treatments. Tumor cell heterogeneity has been considered as one of the main causes for drug resistance in cancer. In this study, the mechanism of oxaliplatin resistance was investigated through in vitro human gastric cancer organoids and gastric cancer oxaliplatin-resistant cell lines and in vivo subcutaneous tumorigenicity experiments. The in vitro and in vivo results indicated that CD133+ stem cell-like cells are the main subpopulation and PARP1 is the central gene mediating oxaliplatin resistance in gastric cancer. It was found that PARP1 can effectively repair DNA damage caused by oxaliplatin by means of mediating the opening of base excision repair pathway, leading to the occurrence of drug resistance. The CD133+ stem cells also exhibited upregulated expression of N6-methyladenosine (m6A) mRNA and its writer METTL3 as showed by immunoprecipitation followed by sequencing and transcriptome analysis. METTTL3 enhances the stability of PARP1 by recruiting YTHDF1 to target the 3'-untranslated Region (3'-UTR) of PARP1 mRNA. The CD133+ tumor stem cells can regulate the stability and expression of m6A to PARP1 through METTL3, and thus exerting the PARP1-mediated DNA damage repair ability. Therefore, our study demonstrated that m6A Methyltransferase METTL3 facilitates oxaliplatin resistance in CD133+ gastric cancer stem cells by Promoting PARP1 mRNA stability which increases base excision repair pathway activity.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Metiltransferases/metabolismo , Células-Tronco Neoplásicas/patologia , Oxaliplatina/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Estabilidade de RNA , Neoplasias Gástricas/tratamento farmacológico , Antígeno AC133 , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Criança , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Prognóstico , RNA Mensageiro , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Heliyon ; 8(12): e12518, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590511

RESUMO

Patient-derived xenograft (PDX) models are more faithful in maintaining the characteristics of human tumors than cell lines and are widely used in drug development, although they have some disadvantages, including their relative low success rate, long turn-around time, and high costs. The collagen gel droplet embedded culture drug sensitivity test (CD-DST) has been used as an in-vitro drug sensitivity test for patients with cancer because of its high success rate of primary cell culture, high sensitivity, and good clinical relevance, but it is based on an in-vitro cell culture and may not simulate the tumor microenvironment accurately. This study aims to combine a PDX model with CD-DST to evaluate the efficiency of antitumor agents. KRpep-2d, a small peptide targeting KRAS (G12D), and oxaliplatin were used to verify the feasibility of this approach. Whole-exome sequencing and Sanger sequencing were first applied to test and validate the KRAS mutation status of a panel of colorectal cancer PDX tissues. One PDX model was verified to carry KRAS (G12D) mutation and was used for in-vivo and the CD-DST drug tests. We then established the PDX mouse model from the patient with the KRAS (G12D) mutation and obtained viable cancer cells derived from the same PDX model. Next, the antitumor abilities of KRpep-2d and oxaliplatin were estimated in the PDX model and the CD-DST. We found that KRpep-2d showed no significant antitumor effect on the xenograft model or on cancer cells derived from the same PDX model. In contrast, oxaliplatin showed significant inhibitory effects in both tests. In conclusion, the PDX model in combination with the CD-DST assay is a comprehensive and feasible method of evaluating the antitumor properties of compounds and could be applied for new drug discovery.

7.
Int J Biol Sci ; 17(11): 2811-2825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345209

RESUMO

Chemotherapy plays an irreplaceable role in the treatment of GC, but currently available chemotherapeutic drugs are not ideal. The application of medicinal plants is an important direction for new drug discovery. Through drug screening of GC organoids, we determined that ailanthone has an anticancer effect on GC cells in vitro and in vivo. We also found that AIL can induce DNA damage and apoptosis in GC cells. Further transcriptome sequencing of PDX tissue indicated that AIL inhibited the expression of XRCC1, which plays an important role in DNA damage repair, and the results were also confirmed by western blotting. In addition, we found that AIL inhibited the expression of P23 and that inhibition of P23 decreased the expression of XRCC1, indicating that AIL can regulate XRCC1 via P23. The results of coimmunoprecipitation showed that AIL can inhibit the binding of P23 and XRCC1 to HSP90. These findings indicate that AIL can induce DNA damage and apoptosis in GC cells. Meanwhile, AIL can decrease XRCC1 activity by downregulating P23 expression to inhibit DNA damage repair. The present study sheds light on the potential application of new drugs isolated from natural medicinal plants for GC therapy.


Assuntos
Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Piridinolcarbamato/metabolismo , Quassinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Ailanthus/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação para Baixo , Descoberta de Drogas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Gástricas/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Genet Genomics ; 48(7): 582-594, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34373220

RESUMO

Anlotinib, a novel multitarget tyrosine kinase inhibitor, has shown promising results in the management of various carcinomas. This study aimed to investigate the antitumor activity of anlotinib in oral squamous cell carcinoma (OSCC) and the underlying molecular mechanism. A retrospective clinical study revealed that anlotinib improved the median progression-free survival (mPFS) and median overall survival (mOS) of patients with recurrent and metastatic (R/M) OSCC, respectively. Functional studies revealed that anlotinib markedly inhibited in vitro proliferation of OSCC cells and impeded in vivo tumor growth of OSCC patient-derived xenograft models. Mechanistically, RNA-sequencing identified that oxidative stress, oxidative phosphorylation and AKT/mTOR signaling were involved in anlotinib-treated OSCC cells. Anlotinib upregulated NADPH oxidase 5 (NOX5) expression, elevated reactive oxygen species (ROS) production, impaired mitochondrial respiration, and promoted apoptosis. Moreover, anlotinb also inhibited phospho-Akt (p-AKT) expression and elevated p-eIF2α expression in OSCC cells. NOX5 knockdown attenuated these inhibitory effects and cytotoxicity in anlotinib-treated OSCC cells. Collectively, we demonstrated that anlotinib monotherapy demonstrated favorable anticancer activity and manageable toxicities in patients with R/M OSCC. The antitumor activity of anlotinib in OSCC may be mainly involved in the suppression of mitochondrial respiration via NOX5-mediated redox imbalance and the AKT/eIF2α pathway.


Assuntos
Indóis , Quinolinas
9.
J Bone Oncol ; 29: 100378, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34221892

RESUMO

OS (Osteosarcoma) is the most common malignant tumor in adolescents, and lung metastasis limits its therapeutic outcome. The present study aimed to establish a highly metastatic human OS cell line directly from lung metastases and characterize its biological functions. In this study, epithelioid tumor cells with large nucleo-cytoplasmic ratio and abundant organelles were obtained by the tissue mass adherent and repeated digestion adherent method and named ZOSL-1 cells. ZOSL-1 cells had the potential to proliferate in vitro with a doubling time of 39.28 ± 3.04 h and migrate with or without a matrix. ZOSL-1 cells were tumorigenic in vivo, and had the ability to develop lung metastasis after intratibial injection. ZOSL-1 cells expressed the osteogenic-related genes osteocalcin and osteopontin. In addition, the expression of ZOSL-1 in Fas cell surface death receptor (FAS), CD44 molecule (CD44), GNAS complex locus (GNAS), scavenger receptor class B member 1 (SCARB1), C-X-C motif chemokine receptor 4 (CXCR4), cadherin 11 (CDH11), neurofibromin 2 (NF2) and ezrin (EZR) genes may be related to its transfer efficiency. Taken together, these results indicated the high metastatic capability and important biological functions of ZOSL-1 cells. ZOSL-1 establishment provided a relevant model for the study of osteosarcoma lung metastasis.

10.
Ann Transl Med ; 9(12): 997, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34277797

RESUMO

BACKGROUND: The oncogene, malignant T-cell-amplified sequence 1 (MCTS1), has been found to be highly expressed in a variety of cancer cell lines. It has been shown to be involved in cell cycle progression and to confer a growth advantage for lymphomas and breast cancer. Nevertheless, the role of MCTS1 in contributing to the development of oral cancer remains elusive. METHODS: We analyzed the gene expression profiles of MCTS1 in normal oral keratinocytes and cancerous cells. Cellular proliferation, invasion, and migration experiments were performed to detect the effect of MCTS1 on the biological evolution of oral cancer. The in vitro results were verified by the in vivo lymphatic metastasis test. The underlying mechanism of MCTS1 in promoting oral cancer invasion and metastasis correlated with the epithelial-mesenchymal transition (EMT) process as revealed by western blotting. RESULTS: The results showed that MCTS1 was aberrantly expressed in oral cancer cells. MCTS1 overexpression significantly promoted tumor cell growth, proliferation, migration, and invasion. MCTS1-mediated lymphatic metastasis was verified in vivo using an intraplantar tumor model. Biomarkers associated with EMT progression were positively or negatively regulated upon knockdown or overexpression of MCTS1, respectively. CONCLUSIONS: Higher MCTS1 expression in oral cancer may be connected with an unfavorable prognosis due to involvement of MCTS1. MCTS1 potentiates the growth and proliferation of oral cancer cells and subsequent metastasis by regulating cell cycle and modifying the EMT process. KEYWORDS: Oral cancer; oncogene; malignant T-cell-amplified sequence 1 (MCTS1); metastasis; invasion.

11.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34301812

RESUMO

BACKGROUND: The efficacy of docetaxel-based chemotherapy is limited by the development of drug resistance. Recent studies demonstrated the efficacy of anti-programmed death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) immunotherapies in metastatic prostate cancer. The ataxia telangiectasia mutation (ATM) protein plays a crucial role in maintaining genome stability and function of mitosis. Here, we aimed to determine whether PD-1/PD-L1 signaling contributes to the resistance to DTX and to elucidate the mechanism underlying DTX-induced PD-L1 expression. METHODS: In this retrospective study, PD-L1 expression was analyzed in 33 tumor tissue samples from prostate cancer patients. Prostate cell lines were used to perform functional assays and examine underlying mechanisms in vitro. A fully mouse prostate cancer model and a humanized chimeric mouse bearing human prostate tumors and peripheral blood mononuclear cells were used for in vivo assays. RESULTS: We have shown that DTX, a chemotherapeutic drug which causing microtubule interference, could significantly induce the expression of PD-L1 in prostate cancer cells. This effect is blocked by the inhibition of ATM, suggesting that it plays an essential role in PD-L1 expression upregulated by DTX. Mechanistic studies have shown that ATM activity in cancer cells enhances the stability of the NF-κB essential modulator (NEMO), which leading to an increase in the NF-κB activity and PD-L1 expression. Using the mouse model, it was further demonstrated that a combination of ATM and NEMO inhibitors along with DTX augmented the antitumor efficacy of chemotherapy, which are comparable to that of PD-L1 antibody. CONCLUSIONS: Our findings have revealed that a previously unrecognized ATM-NEMO signaling which induced by DTX is capable of suppressing tumor immunity by activating the expression of PD-L1, suggesting that the ATM-NEMO-NF-κB axis can be exploited to restore the immune balance and overcome cancer resistance triggered by DTX.Graphic Abstract: supplementary file 1.


Assuntos
Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Docetaxel/uso terapêutico , Imunoterapia/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos Retrospectivos , Transdução de Sinais
12.
Aging (Albany NY) ; 13(4): 5197-5225, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535187

RESUMO

In the process of epithelial-mesenchymal transition (EMT), epithelial cancer cells transdifferentiate into mesenchymal-like cells with high motility and aggressiveness, resulting in the spread of tumor cells. Immune cells and inflammation in the tumor microenvironment are the driving factors of EMT, but few studies have explored the core targets of the interaction between EMT and tumor immune cells. We analyzed thousands of cases of gastric cancer and gastric tissue specimens of TCGA, CPTAC, GTEx and analyzing QPCR and IHC data of 56 gastric cancer patients in SYSU Gastric Cancer Research Center. It was known that EMT has an important connection with the infiltration of NK cells, and that the expression of vinculin may be the target of the phenomenon. The increased expression of vinculin is closely related to the aggressiveness and distant metastasis of cancer, which affects the survival prognosis of the patient. Moreover, through in vitro experiments under 3D conditions, we found that vinculin, cell invasion and metastasis are clearly linked. VCL can affect EMT and tumor immunity by regulating EPCAM gene expression. The role and mechanism of action of vinculin have been controversial, but this molecule may downregulate EpCAM (epithelial cellular adhesion molecule) and its own role in gastric cancer through DNA methylation, causing NK cells to enrich into tumor cells and kill tumor cells. At the same time, it promotes the occurrence of EMT, which in turn causes tumor metastasis and thus poorer prognosis.


Assuntos
Adenocarcinoma/genética , Transição Epitelial-Mesenquimal/genética , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Gástricas/genética , Vinculina/genética , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Molécula de Adesão da Célula Epitelial/metabolismo , Transição Epitelial-Mesenquimal/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Metástase Neoplásica , Prognóstico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Vinculina/metabolismo
13.
Cell Death Dis ; 11(10): 925, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116117

RESUMO

CDK4/6 inhibitors show promising antitumor activity in a variety of solid tumors; however, their role in head and neck squamous cell carcinoma (HNSCC) requires further investigation. The senescence-associated secretory phenotype (SASP) induced by CDK4/6 inhibitors has dual effects on cancer treatment. The need to address the SASP is a serious challenge in the clinical application of CDK4/6 inhibitors. We investigated whether metformin can act as a senostatic drug to modulate the SASP and enhance the anticancer efficacy of CDK4/6 inhibitors in HNSCC. In this study, the efficacy of a combination of the CDK4/6 inhibitor LY2835219 and metformin in HNSCC was investigated in in vitro assays, an HSC6 xenograft model, and a patient-derived xenograft model. Senescence-associated ß-galactosidase staining, antibody array, sphere-forming assay, and in vivo tumorigenesis assay were used to detect the impacts of metformin on the senescence and SASP induced by LY2835219. We found that LY2835219 combined with metformin synergistically inhibited HNSCC by inducing cell cycle arrest in vitro and in vivo. Metformin significantly modulated the profiles of the SASP elicited by LY2835219 by inhibiting the mTOR and stat3 pathways. The LY2835219-induced SASP resulted in upregulation of cancer stemness, while this phenomenon can be attenuated when combined with metformin. Furthermore, results showed that the stemness inhibition by metformin was associated with blockade of the IL6-stat3 axis. Survival analysis demonstrated that overexpression of IL6 and stemness markers was associated with poor survival in HNSCC patients, indicating that including metformin to target these proteins might improve patient prognosis. Collectively, our data suggest that metformin can act as a senostatic drug to enhance the anticancer efficacy of CDK4/6 inhibitors by reprogramming the profiles of the SASP.


Assuntos
Antineoplásicos/uso terapêutico , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Metformina/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Humanos , Metformina/farmacologia , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Life Sci ; 254: 117695, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407849

RESUMO

AIMS: To investigate the therapeutic potential of itraconazole in oral squamous cell carcinoma (OSCC) and its molecular mechanism. MATERIALS AND METHODS: The in vitro anti-cancer effects of itraconazole was determined by CCK-8 assay and colony formation assay. Transwell and wound healing assays were used to examine cell invasion and migration. The in vivo therapeutic efficacy of itraconazole was assessed by OSCC patient-derived xenograft (PDX) model. Western blot was performed to explore the anti-cancer mechanism. KEY FINDINGS: Itraconazole inhibited cell proliferation and colony formation of OSCC cells in a time and concentration dependent manner; induced cell cycle arrest and apoptosis, as well as inhibited cell invasion and migration. In the OSCC PDX model, itraconazole impeded tumor growth, reduced Ki-67 expression and induced apoptosis. Itraconazole downregulated the protein expression of Hedgehog pathway to inhibit proliferation and migration of oral squamous cell carcinoma cells, which can be revised by recombinant human sonic hedgehog protein (rSHH). SIGNIFICANCE: Itraconazole showed anti-cancer effects on OSCC via inhibiting the Hedgehog pathway.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Proteínas Hedgehog/antagonistas & inibidores , Itraconazol/farmacologia , Neoplasias Bucais/patologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Bucais/metabolismo
15.
J Cell Mol Med ; 24(8): 4452-4465, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32176425

RESUMO

BACKGROUND: N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in gastric cancer (GC) tumourigenesis, providing novel insights into the molecular pathogenesis of GC. However, the involvement of Wilms' tumour 1-associated protein (WTAP), a key component of m6A methylation, in GC progression is controversial. Here, we investigated the biological role and underlying mechanism of WTAP in GC. METHODS: We determined WTAP expression using tissue microarrays and The Cancer Genome Atlas (TCGA) data set, which was used to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). CIBERSORT was used to determine WTAP expression in 22 immune cell types. RESULTS: Wilms' tumour 1-associated protein was highly expressed in GC, which indicated a poor prognosis, and WTAP expression served as an independent predictor of GC survival. By WGCNA, GO, KEGG and core gene survival analyses, we found that high WTAP expression correlated with RNA methylation and that low expression correlated with a high T cell-related immune response. CIBERSORT was used to correlate low WTAP expression with T lymphocyte infiltration. CONCLUSION: RNA methylation and lymphocyte infiltration are the main causes of high WTAP expression and poor prognosis, respectively.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Linfócitos do Interstício Tumoral/metabolismo , Fatores de Processamento de RNA/genética , Neoplasias Gástricas/genética , Idoso , Linhagem Celular Tumoral , Proliferação de Células/genética , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias Gástricas/patologia , Linfócitos T/metabolismo
16.
Cell Death Differ ; 27(1): 255-268, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31114028

RESUMO

The mechanistic action of bromodomain-containing protein 4 (BRD4) in cancer motility, including epithelial-mesenchymal transition (EMT), remains largely undefined. We found that targeted inhibition of BRD4 reduces migration, invasion, in vivo growth of patient-derived xenograft (PDX), and lung colonization of breast cancer (BC) cells. Inhibition of BRD4 rapidly decreases the expression of Snail, a powerful EMT transcription factor (EMT-TF), via diminishing its protein stability and transcription. Protein kinase D1 (PRKD1) is responsible for BRD4-regulated Snail protein stability by triggering phosphorylation at Ser11 of Snail and then inducing proteasome-mediated degradation. BRD4 inhibition also suppresses the expression of Gli1, a key transductor of Hedgehog (Hh) required to activate the transcription of SNAI1, in BC cells. The GACCACC sequence (-341 to -333) in the SNAI1 promoter is responsible for Gli1-induced transcription of SNAI1. Clinically, BRD4 and Snail levels are increased in lung-metastasized, estrogen receptor-negative (ER-), and progesterone receptor-negative (PR-) breast cancers and correlate with the expression of mesenchymal markers. Collectively, BRD4 can regulate malignancy of breast cancer cells via both transcriptional and post-translational regulation of Snail.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos/uso terapêutico , Azepinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Proteína Quinase C/metabolismo , Estabilidade Proteica , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica , Triazóis/uso terapêutico , Proteína GLI1 em Dedos de Zinco/metabolismo
17.
Mol Ther Nucleic Acids ; 16: 471-480, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31051332

RESUMO

MicroRNAs have been proposed as novel biomarkers for the diagnosis and treatment of many types of cancer. The levels of five candidate microRNAs (miRNAs) (miR-99a-5p, miR-31-5p, miR-138-5p, miR-21-5p, and miR-375-3p) in sera from oral cancer patients and paired tumor and normal tissues were detected by real-time qPCR. The diagnostic power of these miRNAs was analyzed by receiver operating characteristic (ROC) curves. Patient-derived xenograft (PDX) models of oral cancer were established and utilized to verify the potential therapeutic effect of miR-31-5p. Candidate miRNAs were screened from our previous studies and verified in 11 paired oral cancer and adjacent normal tissues. Only serum miR-31-5p levels were significantly different between oral cancer patients and healthy controls and between pre- and postoperative patients. Based on the logistic regression model, this panel of five miRNAs distinguished oral cancer patients from healthy control, with an area under the ROC curve (AUC) of 0.776 (sensitivity = 76.8% and specificity = 73.6%). Furthermore, a miR-31-5p mimic enhanced the proliferation of normal epithelial cells, and antagomiR-31-5p inhibited the proliferation of oral cancer cells in vitro. In vivo, antagomiR-31-5p significantly inhibited tumor growth in oral cancer PDX models. Our findings suggest that circulating miR-31-5p might act as an independent biomarker for oral cancer diagnosis and could serve as a therapeutic target for oral cancer.

18.
J Autoimmun ; 100: 27-39, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954385

RESUMO

In rheumatoid arthritis (RA), imbalanced T cells subsets play a critical role in sustaining chronic inflammatory responses in the synovium. Naïve T cells in RA patients undergo maldifferentiation, including an increase in the effector Th1/Th17 lineage and a reduction in regulatory T (Treg) cells. Upon stimulation, naïve CD4+CD45RO- T cells from RA patients exhibited insufficient expression of Foxp3, which induced a deficiency in Tregs production and an imbalance of Treg/Th17 differentiation. Further mechanistic study indicated that RA T cells failed to produce sufficient levels of the histone acetyltransferase Tip60, leading to reduced acetylation of Foxp3; this, in turn, decreased Foxp3 expression, impaired Treg commitment, and promoted Th17 production. Moreover, in human synovium chimeric mice, suppression of Tip60 activity in healthy T cells promoted tissue infiltration and arthritogenesis, while reconstitution of Tip60 in RA T cells suppressed synovitis and effector T cell infiltration. Our findings link T cell maldifferentiation and tissue infiltration with Tip60-mediated Foxp3 acetylation and identify Tip60 as a potential therapeutic target for suppression of tissue inflammation and autoimmunogenesis in RA.


Assuntos
Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/imunologia , Lisina Acetiltransferase 5/imunologia , Osteoartrite do Joelho/imunologia , Linfócitos T Reguladores/imunologia , Acetilação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Sinovite/imunologia , Sinovite/patologia , Linfócitos T Reguladores/patologia
19.
BMC Complement Altern Med ; 19(1): 38, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709346

RESUMO

BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) is an oncogene constitutively activated in hepatocellular carcinoma (HCC) cells and HCC cancer stem cells (CSCs). Constitutively activated STAT3 plays a pivotal role in holding cancer stemness of HCC CSCs, which are essential for hepatoma initiation, relapse, metastasis and drug resistance. Therefore, STAT3 has been validated as a novel anti-cancer drug target and the strategies targeting HCC CSCs may bring new hopes to HCC therapy. This study aimed to isolate and identify small-molecule STAT3 signaling inhibitors targeting CSCs from the ethyl acetate (EtOAc) extract of the roots of Polygonum cuspidatum and to evaluate their in vitro anti-cancer activities. METHODS: The chemical components of the EtOAc extract and the subfractions of P. cuspidatum were isolated by using various column chromatographies on silical gel, Sephadex LH-20, and preparative HPLC. Their chemical structures were then determined on the basis of spectroscopic data including NMR, MS and IR analysis and their physicochemical properties. The inhibitory effects of the isolated compounds against STAT3 signaling were screened by a STAT3-dependent luciferase reporter gene assay. The tyrosine phosphorylation of STAT3 was examined by Western Blot analysis. In vitro anti-cancer effects of the STAT3 pathway inhibitor were further evaluated on cell growth of human HCC cells by a MTT assay, on self-renewal capacity of HCC CSCs by the tumorsphere formation assay, and on cell cycle and apoptosis by flow cytometry analysis, respectively. RESULTS: The EtOAc extract of the roots of P. cuspidatum was investigated and a novel juglone analogue 2-ethoxystypandrone (1) along with seven known compounds (2-8) was isolated. Among the eight isolated compounds 1-8, 2-ethoxystypandrone was a novel and potent STAT3 signaling inhibitor (IC50 = 7.75 ± 0.18 µM), and inhibited the IL-6-induced and constitutive activation of phosphorylation of STAT3 in HCC cells. Moreover, 2-ethoxystypandrone inhibited cell survival of HCC cells (IC50 = 3.69 ± 0.51 µM ~ 20.36 ± 2.90 µM), blocked the tumorspheres formation (IC50 = 2.70 ± 0.28 µM), and induced apoptosis of HCC CSCs in a dose-dependent manner. CONCLUSION: A novel juglone analogue 2-ethoxystypandrone was identified from the EtOAc extract of the roots of P. cuspidatum and was demonstrated to be a potent small-molecule STAT3 signaling inhibitor, which strongly blocked STAT3 activation, inhibited proliferation, and induced cell apoptosis of HCC cells and HCC CSCs. 2-Ethoxystypandrone as a STAT3 signaling inhibitor might be a promising lead compound for further development into an anti-CSCs drug.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fallopia japonica/química , Naftoquinonas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
20.
J Hazard Mater ; 355: 1-9, 2018 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-29758456

RESUMO

Nowadays, risk factors of triple-negative breast cancer (TNBC) metastasis are not well identified. Our present study reveals that an industrial chemical, bisphenol S (BPS), can promote the migration, but not the proliferation, of TNBC cells in vitro. BPS activates YAP, a key effector of Hippo pathway, by inhibiting its phosphorylation, which promotes YAP nuclear accumulation and up-regulates its downstream genes such as CTGF and ANKRD1. Inhibition of YAP blocks the BPS-triggered cell migration and up-regulation of fibronectin (FN) and vimentin (Vim). BPS rapidly decreases the phosphorylation levels of LATS1 (Ser909) in TNBC cells, which regulates the activation and functions of YAP. Silencing LATS1/2 by siRNA increases BPS-induced dephosphorylation of YAP and extended the half-life of YAP protein. Inhibition of G protein-coupled estrogen receptor 1 (GPER) and its downstream PLCß/PKC signals attenuate the effects of BPS-induced YAP dephosphorylation and CTGF up-regulation. Targeted inhibition of GPER/YAP inhibits BPS-induced migration of TNBC cells. Collectively, we reveal that GPER/Hippo-YAP signal is involved in BPS-induced migration of TNBC cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular/efeitos dos fármacos , Fenóis/farmacologia , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Via de Sinalização Hippo , Humanos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA