Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
EFSA J ; 21(10): e08323, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915981

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms intended for use in the food or feed chains. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications' which should be assessed at strain and/or product level by EFSA's Scientific Panels. The generic qualification 'the strains should not harbour any acquired antimicrobial resistance (AMR) genes to clinically relevant antimicrobials' applies to all QPS bacterial TUs. The different EFSA risk assessment areas use the same approach to assess the qualification related to AMR genes. In this statement, the terms 'intrinsic' and 'acquired' AMR genes were defined for the purpose of EFSA's risk assessments, and they apply to bacteria used in the food and feed chains. A bioinformatic approach is proposed for demonstrating the 'intrinsic'/'acquired' nature of an AMR gene. All AMR genes that confer resistance towards 'critically important', 'highly important' and 'important' antimicrobials, as defined by the World Health Organisation (WHO), found as hits, need to be considered as hazards (for humans, animals and environment) and need further assessment. Genes identified as responsible for 'intrinsic' resistance could be considered as being of no concern in the frame of the EFSA risk assessment. 'Acquired' AMR genes resulting in a resistant phenotype should be considered as a concern. If the presence of the 'acquired' AMR gene is not leading to phenotypic resistance, further case-by-case assessment is necessary.

2.
Front Microbiol ; 14: 1221478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440885

RESUMO

Despite growing attention, antibiotics (such as streptomycin, oxytetracycline or kasugamycin) are still used worldwide for the control of major bacterial plant diseases. This raises concerns on their potential, yet unknown impact on antibiotic and multidrug resistances and the spread of their genetic determinants among bacterial pathogens. Antibiotic resistance genes (ARGs) have been identified in plant pathogenic bacteria (PPB), with streptomycin resistance genes being the most commonly reported. Therefore, the contribution of mobile genetic elements (MGEs) to their spread among PPB, as well as their ability to transfer to other bacteria, need to be further explored. The only well-documented example of ARGs vector in PPB, Tn5393 and its highly similar variants (carrying streptomycin resistance genes), is concerning because of its presence outside PPB, in Salmonella enterica and Klebsiella pneumoniae, two major human pathogens. Although its structure among PPB is still relatively simple, in human- and animal-associated bacteria, Tn5393 has evolved into complex associations with other MGEs and ARGs. This review sheds light on ARGs and MGEs associated with PPB, but also investigates the potential role of antibiotic use in resistance selection in plant-associated bacteria.

3.
One Health ; 15: 100464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561708

RESUMO

In the coming decade, Europe will dedicate billions of euros to the necessary research and innovation (R&I) to support a transition to safe and sustainable food systems. EU Agencies, individually and even more so collectively, can make a difference in supporting the European research agenda. EU Agencies are knowledge centres, bringing together know-how to inform policy makers. EU Agencies that have traditionally dealt with aspects of human health, animal health, plant health and ecosystem health in silos, now need to take a broader perspective and move towards a One Health (OH) approach. In this paper, the authors highlight the need for more transdisciplinary cooperation in support of the One Health approach, identify challenges in strengthening interagency cooperation and provide recommendations to address them. EU Agencies are natural bridges between the scientific community and policy-makers and need to dedicate time and effort in fostering this dialogue, e.g. by engaging with relevant initiatives, research projects and European Partnerships. Research generates evidence that can be used also for regulatory science, in support of policy-making. It is urgent to define transdisciplinary research needs and formulate a One Health research agenda. This would be facilitated by establishing transdisciplinary One Health Research & Innovation governance, both at national and EU levels. Ongoing large initiatives, such as the One Health European Joint Programme, have demonstrated that active dialogue with national ministries and EU agencies is beneficial for all parties. Involvement of EU Agencies in the programming of the EU Research Framework programmes is beneficial, because of their regulatory science perspective, their expertise and current or future tasks on research topics. It is timely for EU Agencies to demonstrate leadership in moving the One Health agenda forward and it is encouraging that EU Agencies have committed to establish a cross-agency task force on One Health.

4.
EFSA J ; 20(10): e07586, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36304831

RESUMO

The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.

5.
EFSA J ; 19(10): e06852, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729081

RESUMO

The European Commission requested EFSA to assess, in collaboration with EMA, the specific concentrations of antimicrobials resulting from cross-contamination in non-target feed for food-producing animals below which there would not be an effect on the emergence of, and/or selection for, resistance in microbial agents relevant for human and animal health, as well as the levels of the antimicrobials which could have a growth promotion/increase yield effect. The assessment was performed for 24 antimicrobial active substances, as specified in the mandate. This scientific opinion describes the methodology used, and the main associated data gaps and uncertainties. To estimate the antimicrobial levels in the non-target feed that would not result in emergence of, and/or selection for, resistance, a model was developed. This 'Feed Antimicrobial Resistance Selection Concentration' (FARSC) model is based on the minimal selective concentration (MSC), or the predicted MSC (PMSC) if MSC for the most susceptible bacterial species is unavailable, the fraction of antimicrobial dose available for exposure to microorganisms in the large intestine or rumen (considering pharmacokinetic parameters), the daily faecal output or rumen volume and the daily feed intake. Currently, lack of data prevents the establishment of PMSC and/or FARSC for several antimicrobials and animal species. To address growth promotion, data from an extensive literature search were used. Specific assessments of the different substances grouped by antimicrobial classes are addressed in separate scientific opinions. General conclusions and recommendations were made.

6.
EFSA J ; 19(10): e06853, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729082

RESUMO

The specific concentrations of apramycin, paromomycin, neomycin and spectinomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for these antimicrobials, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for apramycin and neomycin, whilst for paromomycin and spectinomycin, no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these four antimicrobials.

7.
EFSA J ; 19(10): e06854, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729083

RESUMO

The specific concentrations of amprolium in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for amprolium, it was not possible to conclude the assessment. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of amprolium in feed that showed to have an effect on growth promotion/increased yield were reported. The lack of antibacterial activity at clinically relevant concentrations for amprolium suggests that further studies relating to bacterial resistance are not a priority.

8.
EFSA J ; 19(10): e06855, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729084

RESUMO

The specific concentrations of amoxicillin and penicillin V in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for amoxicillin, whilst for penicillin V no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.

9.
EFSA J ; 19(10): e06856, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729085

RESUMO

The specific concentrations of lincomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of lincomycin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for lincomycin.

10.
EFSA J ; 19(10): e06859, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729087

RESUMO

The specific concentrations of florfenicol and thiamphenicol in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for florfenicol was estimated. However, due to the lack of data, the calculation of the FARSC for thiamphenicol was not possible until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for florfenicol, whilst for thiamphenicol no suitable data for the assessment were available. Uncertainties and data gaps associated to the levels reported were addressed. For florfenicol, it was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC, whereas for thiamphenicol, the recommendation was to generate the data required to fill the gaps which prevented the FARSC calculation.

11.
EFSA J ; 19(10): e06858, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729086

RESUMO

The specific concentrations of tilmicosin, tylosin and tylvalosin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tilmicosin and tylosin, whilst for tylvalosin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these three antimicrobials.

12.
EFSA J ; 19(10): e06860, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729088

RESUMO

The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.

13.
EFSA J ; 19(10): e06861, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729089

RESUMO

The specific concentrations of colistin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of colistin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.

14.
EFSA J ; 19(10): e06862, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729090

RESUMO

The specific concentrations of flumequine and oxolinic acid in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. No suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.

15.
EFSA J ; 19(10): e06863, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729091

RESUMO

The specific concentrations of sulfonamides in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were identified for three sulfonamides: sulfamethazine, sulfathiazole and sulfamerazine. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.

16.
EFSA J ; 19(10): e06865, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729093

RESUMO

The specific concentrations of trimethoprim in non-target feed for food-producing animals below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for trimethoprim was estimated. Uncertainties and data gaps associated to the levels reported were addressed. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. No suitable data for the assessment were available. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for trimethoprim.

17.
EFSA J ; 19(10): e06864, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729092

RESUMO

The specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobials.

18.
J Food Prot ; 84(12): 2059-2070, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197583

RESUMO

ABSTRACT: Foodborne diseases remain a global public health challenge worldwide. The European surveillance system of multistate foodborne outbreaks integrates elements from public and animal health and the food chain for early detection, assessment, and control. This review includes descriptions of the significant outbreaks that occurred in Europe in the last decade. Their significance and relevance to public health is derived from the changes, improvements, and novelties that pushed toward building a safer food system in the European Union, certainly driven by the One Health approach. In 2011, a point source monoclonal outbreak of infections caused by Escherichia coli serotype O104:H4 in sprouted seeds resulted in hundreds of cases of hemolytic uremic syndrome and several fatalities. In 2015, a prolonged outbreak of Listeria monocytogenes infections caused by contamination of frozen corn in Europe resulted in 47 cases and nine deaths. In 2016, a persistent polyclonal outbreak of Salmonella Enteritidis was linked to the consumption of eggs and was associated with hundreds of cases. The outbreak evaluations highlight the importance of rapid sharing of data (e.g., sequencing and tracing data) and the need for harmonizing bioinformatics outputs and computational approaches to facilitate detection and investigation of foodborne illnesses. These outbreaks led to development of a legal framework for a European collaboration platform for sharing whole genome sequence data and enabled the enforcement of existing hygiene and food safety provisions and the development of new hygiene guidelines and best practices. This review also briefly touches on the new trends in information technologies that are being explored for food traceability and safety. These technologies could enhance the traceability of food throughout the supply chain and redirect the conventional tracing system toward a digitized supply chain.


Assuntos
Infecções por Escherichia coli , Doenças Transmitidas por Alimentos , Listeriose , Escherichia coli Shiga Toxigênica , Animais , Surtos de Doenças , Infecções por Escherichia coli/epidemiologia , Europa (Continente)/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Salmonella enteritidis
19.
EFSA J ; 19(6): e06651, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34178158

RESUMO

The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.

20.
EFSA J ; 17(6): e05709, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32626332

RESUMO

Proposals to update the harmonised monitoring and reporting of antimicrobial resistance (AMR) from a public health perspective in Salmonella, Campylobacter coli, Campylobacter jejuni, Escherichia coli, Enterococcus faecalis, Enterococcus faecium and methicillin-resistant Staphylococcus aureus (MRSA) from food-producing animals and derived meat in the EU are presented in this report, accounting for recent trends in AMR, data collection needs and new scientific developments. Phenotypic monitoring of AMR in bacterial isolates, using microdilution methods for testing susceptibility and interpreting resistance using epidemiological cut-off values is reinforced, including further characterisation of those isolates of E. coli and Salmonella showing resistance to extended-spectrum cephalosporins and carbapenems, as well as the specific monitoring of ESBL/AmpC/carbapenemase-producing E. coli. Combinations of bacterial species, food-producing animals and meat, as well as antimicrobial panels have been reviewed and adapted, where deemed necessary. Considering differing sample sizes, numerical simulations have been performed to evaluate the related statistical power available for assessing occurrence and temporal trends in resistance, with a predetermined accuracy, to support the choice of harmonised sample size. Randomised sampling procedures, based on a generic proportionate stratified sampling process, have been reviewed and reinforced. Proposals to improve the harmonisation of monitoring of prevalence, genetic diversity and AMR in MRSA are presented. It is suggested to complement routine monitoring with specific cross-sectional surveys on MRSA in pigs and on AMR in bacteria from seafood and the environment. Whole genome sequencing (WGS) of isolates obtained from the specific monitoring of ESBL/AmpC/carbapenemase-producing E. coli is strongly advocated to be implemented, on a voluntary basis, over the validity period of the next legislation, with possible mandatory implementation by the end of the period; the gene sequences encoding for ESBL/AmpC/carbapenemases being reported to EFSA. Harmonised protocols for WGS analysis/interpretation and external quality assurance programmes are planned to be provided by the EU-Reference Laboratory on AMR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA