Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Cardiovasc Res ; 2(7): 656-672, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38362263

RESUMO

The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.

3.
Atherosclerosis ; 349: 240-247, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400495

RESUMO

BACKGROUND AND AIMS: The LPA gene encodes apolipoprotein (a), a key component of Lp(a), a potent risk factor for cardiovascular disease with no specific pharmacotherapy. Here we describe the pharmacological data for SLN360, a GalNAc-conjugated siRNA targeting LPA, designed to address this unmet medical need. METHODS: SLN360 was tested in vitro for LPA knockdown in primary hepatocytes. Healthy cynomolgus monkeys received single or multiple subcutaneous doses of the SLN360 sequence ranging from 0.1 to 9.0 mg/kg to determine the pharmacokinetic and pharmacodynamic effects. Liver mRNA and serum biomarker analyses were performed. RESULTS: In vitro, the SLN360 sequence potently reduces LPA mRNA in primary cynomolgus and human hepatocytes, while no effect was observed on the expression of APOB or PLG. In vivo, SLN360 exposure peaks 2 h after subcutaneous injection with near full elimination by 24 h. Specific LPA mRNA reduction (up to 91% 2 weeks after dosing) was observed with only the 3 mg/kg group showing appreciable return to baseline (40%). No consistent dose- or time-dependent effect on the expression of APOB, PLG or a panel of sensitive markers of liver lipid accumulation was observed. Potent (up to 95%) and long lasting (≥9 weeks) serum Lp(a) reduction was observed, peaking in all active groups at day 21. The minimally effective dose was determined to be 0.3 mg/kg with an ED50 of 0.6 mg/kg. CONCLUSIONS: SLN360 induces a sustained reduction in serum Lp(a) levels in cynomolgus monkeys following subcutaneous dosing. SLN360 has potential to address the unmet need of Lp(a) reduction in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Hiperlipidemias , Apolipoproteínas A , Apolipoproteínas B , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Humanos , Lipoproteína(a) , RNA Mensageiro , RNA Interferente Pequeno/genética
4.
Mol Ther Nucleic Acids ; 27: 1116-1126, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35251767

RESUMO

Synthetic siRNA guide strands are typically designed with perfect complementarity to the passenger strand and the target mRNA. We examined whether siRNAs with intentional guide-strand bulges are functional in vitro and in vivo. Importantly, this was done by systematic shortening of the passenger strand, evaluating identical 19-mer guide-strand sequences but forcing them into conformations with 1- to 4-nt bulges after annealing. We demonstrate that guide-strand bulges can be well tolerated at several positions of unmodified and modified siRNAs. Beyond that, we show that GalNAc-conjugated siRNAs with bulges at certain positions of the guide strand repress transthyretin in murine primary hepatocytes and in vivo in mice. In vivo, a GalNAc-conjugated siRNA with a 1-nt bulge at position 14 of the guide strand was as active as the perfectly complementary siRNA. Finally, in a luciferase reporter system, mRNA target sequences were systematically shortened so that RNA-induced silencing complex activity could only occur with a guide-strand bulge. Here, luciferase reporters were repressed when 1- and 2-nt deletions of the reporter were applied to the edges of the sequence. We conclude that some guide-strand bulges versus target transcript can result in target repression and therefore should be evaluated as off-target risks.

5.
Mol Ther ; 30(4): 1661-1674, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-34400330

RESUMO

Emerging clinical data show that three ceramide molecules, Cer d18:1/16:0, Cer d18:1/24:1, and Cer d18:1/24:0, are biomarkers of a fatal outcome in patients with cardiovascular disease. This finding raises basic questions about their metabolic origin, their contribution to disease pathogenesis, and the utility of targeting the underlying enzymatic machinery for treatment of cardiometabolic disorders. Here, we outline the development of a potent N-acetylgalactosamine-conjugated antisense oligonucleotide engineered to silence ceramide synthase 2 specifically in hepatocytes in vivo. We demonstrate that this compound reduces the ceramide synthase 2 mRNA level and that this translates into efficient lowering of protein expression and activity as well as Cer d18:1/24:1 and Cer d18:1/24:0 levels in liver. Intriguingly, we discover that the hepatocyte-specific antisense oligonucleotide also triggers a parallel modulation of blood plasma ceramides, revealing that the biomarkers predictive of cardiovascular death are governed by ceramide biosynthesis in hepatocytes. Our work showcases a generic therapeutic framework for targeting components of the ceramide enzymatic machinery to disentangle their roles in disease causality and to explore their utility for treatment of cardiometabolic disorders.


Assuntos
Doenças Cardiovasculares , Oligonucleotídeos Antissenso , Oxirredutases , Biomarcadores , Doenças Cardiovasculares/genética , Ceramidas , Inativação Gênica , Hepatócitos , Humanos , Oligonucleotídeos Antissenso/genética , Oxirredutases/antagonistas & inibidores , Plasma
6.
Cardiovasc Res ; 118(5): 1218-1231, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33769464

RESUMO

Lipid- and lipoprotein-modifying therapies have expanded substantially in the last 25 years, resulting in reduction in the incidence of major adverse cardiovascular events. However, no specific lipoprotein(a) [Lp(a)]-targeting therapy has yet been shown to reduce cardiovascular disease risk. Many epidemiological and genetic studies have demonstrated that Lp(a) is an important genetically determined causal risk factor for coronary heart disease, aortic valve disease, stroke, heart failure, and peripheral vascular disease. Accordingly, the need for specific Lp(a)-lowering therapy has become a major public health priority. Approximately 20% of the global population (1.4 billion people) have elevated levels of Lp(a) associated with higher cardiovascular risk, though the threshold for determining 'high risk' is debated. Traditional lifestyle approaches to cardiovascular risk reduction are ineffective at lowering Lp(a). To address a lifelong risk factor unmodifiable by non-pharmacological means, Lp(a)-lowering therapy needs to be safe, highly effective, and tolerable for a patient population who will likely require several decades of treatment. N-acetylgalactosamine-conjugated gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotide targeting LPA, are ideally suited for this application, offering a highly tissue- and target transcript-specific approach with the potential for safe and durable Lp(a) lowering with as few as three or four doses per year. In this review, we evaluate the causal role of Lp(a) across the cardiovascular disease spectrum, examine the role of established lipid-modifying therapies in lowering Lp(a), and focus on the anticipated role for siRNA therapeutics in treating and preventing Lp(a)-related disease.


Assuntos
Doenças Cardiovasculares , Lipoproteína(a) , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Humanos , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Interferência de RNA , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/genética , Fatores de Risco
7.
Mol Ther Nucleic Acids ; 21: 242-250, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32590173

RESUMO

N-acetyl-galactosamine (GalNAc) conjugation enhances liver specificity for therapeutic oligonucleotides. Here we report on a novel design with improved activity and stability compared with a triantennary design. We applied a versatile monovalent serinol-GalNAc conjugation strategy. First, 1-4 serial serinol-linked GalNAc units were conjugated to terminal positions of small interfering RNA (siRNA) molecules. In primary hepatocytes, 5' antisense GalNAc conjugates were inactive, whereas 3' antisense and 3' or 5' sense conjugates displayed low activity for single GalNAc units, while 2-4 serial GalNAc conjugates were all equally potent. In mice, 5' sense conjugates with 2-4 serial GalNAc units were all as potent as a triantennary GalNAc control (1 mg/kg). Second, increased spacing between two serial 5' sense-conjugated GalNAc units did not affect in vitro activity. Finally, two single GalNAc units were positioned at opposite ends of the sense strand. A single dose (0.3 mg/kg) of this novel conjugate in mice showed a 3-fold reduction of serum target protein level at day 7 and 4-fold lower serum level at day 27, relative to an equimolar dose of a triantennary GalNAc conjugate of the same siRNA. Improved tritosome stability (by liquid chromatography-mass spectrometry [LC-MS] analysis) can at least partially explain the increased activity and duration of action for the novel GalNAc conjugate.

8.
Nucleic Acid Ther ; 30(1): 4-13, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31618108

RESUMO

Methods for the quantification of antisense oligonucleotides (AONs) provide insightful information on biodistribution and intracellular trafficking. However, the established methods have not provided information on the absolute number of molecules in subcellular compartments or about how many AONs are needed for target gene reduction for unconjugated AONs. We have developed a new method for nuclear AON quantification that enables us to determine the absolute number of AONs per nucleus without relying on AON conjugates such as fluorophores that may alter AON distribution. This study describes an alternative and label-free method using subcellular fractionation, nucleus counting, and locked nucleic acid (LNA) sandwich enzyme-linked immunosorbent assay to quantify absolute numbers of oligonucleotides in nuclei. Our findings show compound variability (diversity) by which 247,000-693,000 LNAs/nuclei results in similar target reduction for different compounds. This method can be applied to any antisense drug discovery platform providing information on specific and clinically relevant AONs. Finally, this method can directly compare nuclear entry of AON with target gene knockdown for any compound design and nucleobase sequence, gene target, and phosphorothioate stereochemistry.


Assuntos
Terapia de Alvo Molecular , Oligonucleotídeos Antissenso/isolamento & purificação , Oligonucleotídeos/isolamento & purificação , Distribuição Tecidual/genética , Núcleo Celular/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , Distribuição Tecidual/efeitos dos fármacos
9.
Nucleic Acids Res ; 47(2): 953-969, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30462278

RESUMO

Locked nucleic acid based antisense oligonucleotides (LNA-ASOs) can reach their intracellular RNA targets without delivery modules. Functional cellular uptake involves vesicular accumulation followed by translocation to the cytosol and nucleus. However, it is yet unknown how many LNA-ASO molecules need to be delivered to achieve target knock down. Here we show by quantitative fluorescence imaging combined with LNA-ASO microinjection into the cytosol or unassisted uptake that ∼105 molecules produce >50% knock down of their targets, indicating that a substantial amount of LNA-ASO escapes from endosomes. Microinjected LNA-ASOs redistributed within minutes from the cytosol to the nucleus and remained bound to nuclear components. Together with the fact that RNA levels for a given target are several orders of magnitude lower than the amounts of LNA-ASO, our data indicate that only a minor fraction is available for RNase H1 mediated reduction of target RNA. When non-specific binding sites were blocked by co-administration of non-related LNA-ASOs, the amount of target LNA-ASO required was reduced by an order of magnitude. Therefore, dynamic processes within the nucleus appear to influence the distribution and activity of LNA-ASOs and may represent important parameters for improving their efficacy and potency.


Assuntos
Técnicas de Silenciamento de Genes , Oligonucleotídeos/análise , Núcleo Celular/genética , Recuperação de Fluorescência Após Fotodegradação , Humanos , Células MCF-7 , Microinjeções , Microscopia de Fluorescência , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/análise
10.
Epigenetics ; 11(5): 321-34, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27088456

RESUMO

Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1-200 µM range, respectively, with a maximal differential response at the 100 µM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to ß-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts.


Assuntos
Ácido Araquidônico/metabolismo , Aterosclerose/genética , Metilação de DNA/efeitos dos fármacos , Ácido Oleico/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Aterosclerose/metabolismo , Aterosclerose/patologia , Epigênese Genética/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Genoma Humano , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Ácido Oleico/administração & dosagem , PPAR alfa/genética
11.
Circ Res ; 117(11): 933-42, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26358193

RESUMO

RATIONALE: Plasma cholesterol lowering is beneficial in patients with atherosclerosis. However, it is unknown how it affects entry and degradation of low-density lipoprotein (LDL) particles in the lesioned arterial wall. OBJECTIVE: We studied the effect of lipid-lowering therapy on LDL permeability and degradation of LDL particles in atherosclerotic aortas of mice by measuring the accumulation of iodinated LDL particles in the arterial wall. METHODS AND RESULTS: Cholesterol-fed, LDL receptor-deficient mice were treated with either an anti-Apob antisense oligonucleotide or a mismatch control antisense oligonucleotide once a week for 1 or 4 weeks before injection with preparations of iodinated LDL particles. The anti-Apob antisense oligonucleotide reduced plasma cholesterol by ≈90%. The aortic LDL permeability and degradation rates of newly entered LDL particles were reduced by ≈50% and ≈85% already after 1 week of treatment despite an unchanged pool size of aortic iodinated LDL particles. In contrast, the size, foam cell content, and aortic pool size of iodinated LDL particles of aortic atherosclerotic plaques were not reduced until after 4 weeks of treatment with the anti-Apob antisense oligonucleotide. CONCLUSIONS: Improved endothelial barrier function toward the entry of plasma LDL particles and diminished aortic degradation of the newly entered LDL particles precede plaque regression.


Assuntos
Aorta/metabolismo , Doenças da Aorta/terapia , Apolipoproteínas B/metabolismo , Aterosclerose/terapia , Lipoproteínas LDL/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteína B-100 , Apolipoproteínas B/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Permeabilidade Capilar , Colesterol na Dieta/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Células Espumosas/metabolismo , Humanos , Lipoproteínas LDL/administração & dosagem , Lipoproteínas LDL/sangue , Masculino , Camundongos Knockout , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Pinocitose , Placa Aterosclerótica , Proteólise , Receptores de LDL/deficiência , Receptores de LDL/genética , Indução de Remissão , Fatores de Tempo
12.
Br J Clin Pharmacol ; 80(6): 1350-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26261033

RESUMO

AIMS: LDL-receptor expression is inhibited by the protease proprotein convertase subtilisin/kexin type 9 (PCSK9), which is considered a pharmacological target to reduce LDL-C concentrations in hypercholesterolaemic patients. We performed a first-in-human trial with SPC5001, a locked nucleic acid antisense inhibitor of PCSK9. METHODS: In this randomized, placebo-controlled trial, 24 healthy volunteers received three weekly subcutaneous administrations of SPC5001 (0.5, 1.5 or 5 mg kg(-1)) or placebo (SPC5001 : placebo ratio 6 : 2). End points were safety/tolerability, pharmacokinetics and efficacy of SPC5001. RESULTS: SPC5001 plasma exposure (AUC(0,24 h)) increased more than dose-proportionally. At 5 mg kg(-1), SPC5001 decreased target protein PCSK9 (day 15 to day 35: -49% vs. placebo, P < 0.0001), resulting in a reduction in LDL-C concentrations (maximal estimated difference at day 28 compared with placebo -0.72 mmol l(-1), 95% confidence interval - 1.24, -0.16 mmol l(-1); P < 0.01). SPC5001 treatment (5 mg kg(-1)) also decreased ApoB (P = 0.04) and increased ApoA1 (P = 0.05). SPC5001 administration dose-dependently induced mild to moderate injection site reactions in 44% of the subjects, and transient increases in serum creatinine of ≥20 µmol l(-1) (15%) over baseline with signs of renal tubular toxicity in four out of six subjects at the highest dose level. One subject developed biopsy-proven acute tubular necrosis. CONCLUSIONS: SPC5001 treatment dose-dependently inhibited PCSK9 and decreased LDL-C concentrations, demonstrating human proof-of-pharmacology. However, SPC5001 caused mild to moderate injection site reactions and renal tubular toxicity, and clinical development of SPC5001 was terminated. Our findings underline the need for better understanding of the molecular mechanisms behind the side effects of compounds such as SPC5001, and for sensitive and relevant renal toxicity monitoring in future oligonucleotide studies.


Assuntos
Oligonucleotídeos Antissenso/farmacologia , Pró-Proteína Convertases/antagonistas & inibidores , Adulto , Idoso , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Rim/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/efeitos adversos , Pró-Proteína Convertase 9 , Serina Endopeptidases
13.
Mol Ther Nucleic Acids ; 3: e149, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24549300

RESUMO

Antisense oligonucleotides complementary to RNA targets promise generality and ease of drug design. The first systemically administered antisense drug was recently approved for treatment and others are in clinical development. Chemical modifications that increase the hybridization affinity of oligonucleotides are reasoned to confer higher potency, i.e., modified oligonucleotides can be dosed at lower concentrations to achieve the same effect. Surprisingly, shorter and less affine oligonucleotides sometimes display increased potency. To explain this apparent contradiction, increased uptake or decreased propensity to form structures have been suggested as possible mechanisms. Here, we provide an alternative explanation that invokes only the kinetics behind oligonucleotide-mediated cleavage of RNA targets. A model based on the law of mass action predicts, and experiments support, the existence of an optimal binding affinity. Exaggerated affinity, and not length per se, is detrimental to potency. This finding clarifies how to optimally apply high-affinity modifications in the discovery of potent antisense oligonucleotide drugs.

14.
Sci Transl Med ; 5(212): 212ra162, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24259050

RESUMO

MicroRNAs (miRNAs) regulate many aspects of human biology. They target mRNAs for translational repression or degradation through base pairing with 3' untranslated regions, primarily via seed sequences (nucleotides 2 to 8 in the mature miRNA sequence). A number of individual miRNAs and miRNA families share seed sequences and targets, but differ in the sequences outside of the seed. miRNAs have been implicated in the etiology of a wide variety of human diseases and therefore represent promising therapeutic targets. However, potential redundancy of different miRNAs sharing the same seed sequence and the challenge of simultaneously targeting miRNAs that differ significantly in nonseed sequences complicate therapeutic targeting approaches. We recently demonstrated effective inhibition of entire miRNA families using seed-targeting 8-mer locked nucleic acid (LNA)-modified antimiRs in short-term experiments in mammalian cells and in mice. However, the long-term efficacy and safety of this approach in higher organisms, such as humans and nonhuman primates, have not been determined. We show that pharmacological inhibition of the miR-33 family, key regulators of cholesterol/lipid homeostasis, by a subcutaneously delivered 8-mer LNA-modified antimiR in obese and insulin-resistant nonhuman primates results in derepression of miR-33 targets, such as ABCA1, increases circulating high-density lipoprotein cholesterol, and is well tolerated over 108 days of treatment. These findings demonstrate the efficacy and safety of an 8-mer LNA-antimiR against an miRNA family in a nonhuman primate metabolic disease model, suggesting that this could be a feasible approach for therapeutic targeting of miRNA families sharing the same seed sequence in human diseases.


Assuntos
Inativação Gênica , MicroRNAs/antagonistas & inibidores , Animais , HDL-Colesterol/sangue , Feminino , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Primatas
15.
Mol Ther ; 20(2): 376-81, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22108858

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.


Assuntos
LDL-Colesterol/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/química , Pró-Proteína Convertases/antagonistas & inibidores , Animais , Humanos , Injeções Subcutâneas , Macaca fascicularis , Masculino , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
16.
BMC Genomics ; 12: 582, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22118513

RESUMO

BACKGROUND: We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. RESULTS: Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. CONCLUSIONS: Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.


Assuntos
Metilação de DNA , Inativação Gênica , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Linhagem Celular , Epigênese Genética , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteômica
17.
Cardiovasc Pathol ; 20(1): 36-43, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-19919900

RESUMO

INTRODUCTION: Transcription factor activator protein-1 regulates genes involved in inflammation and repair. The aim of this study was to determine whether transcription factor activator protein-1 activity in carotid plaques is related to symptoms, lipid accumulation, or extracellular matrix composition. METHODS: Twenty-eight atherosclerotic carotid plaques were removed by endarterectomy and divided into two groups based on the presence or absence of ipsilateral symptoms (<1 month ago). Activator protein-1 DNA binding activity was assessed, and subunit (c-Jun, JunD, JunB, c-Fos, FosB, Fra-1, Fra-2) protein levels analyzed by immunoblotting. Distribution of c-Jun in plaques was analyzed by immunohistochemistry. RESULTS: Plaques associated with symptoms had increased activator protein-1 activity and increased expression of c-Jun and JunD, as compared to asymptomatic plaques. Fra-1 and Fra-2 were present in equal amounts in both groups, whereas JunB, FosB, and c-Fos were undetectable. Activator protein-1 activity correlated with cholesteryl ester and elastin in plaques and decreased with age. Activator protein-1 activity did not correlate with collagen, calcified tissue, or proteoglycan content. CONCLUSIONS: Activator protein-1 is increased in plaques associated with symptoms. The correlation between activator protein-1 and cholesteryl esters suggests that high activator protein-1 is a marker of plaque vulnerability. Activator protein-1 expression can also reflect the activation of repair processes.


Assuntos
Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Ésteres do Colesterol/metabolismo , Fator de Transcrição AP-1/metabolismo , Idoso , Estenose das Carótidas/cirurgia , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/metabolismo , Endarterectomia das Carótidas , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/química
18.
Nucleic Acids Res ; 38(20): 7100-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20615897

RESUMO

The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half-life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1-2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non-high-density lipoprotein (non-HDL) cholesterol without increasing serum liver toxicity markers. The data presented here show that oligonucleotide length as a parameter needs to be considered in the design of antisense oligonucleotide and that potent short oligonucleotides with sufficient target affinity can be generated using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates.


Assuntos
Apolipoproteínas B/metabolismo , Colesterol/sangue , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Animais , Apolipoproteínas B/genética , Autorradiografia , Pareamento Incorreto de Bases , Linhagem Celular Tumoral , Feminino , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos/química , Oligonucleotídeos/farmacocinética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacocinética , RNA Mensageiro/metabolismo
19.
PLoS One ; 5(5): e10682, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20498851

RESUMO

BACKGROUND: The proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in the etiology of familial hypercholesterolemia (FH) and is also an attractive therapeutic target to reduce low density lipoprotein (LDL) cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR) and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol. METHODOLOGY/PRINCIPAL FINDINGS: The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA) antisense oligonucleotide (LNA ASO) that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT) levels revealed that long term LNA ASO treatment (7 weeks) does not cause hepatotoxicity. CONCLUSION/SIGNIFICANCE: LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome.


Assuntos
Inativação Gênica/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células Hep G2 , Humanos , Injeções Intravenosas , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Reação em Cadeia da Polimerase , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Serina Endopeptidases/genética
20.
Br J Nutr ; 103(4): 513-21, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19840420

RESUMO

Cholesterol-lowering effects of oats have been demonstrated in both animals and human subjects. However, the crucial properties of oat-containing diets that determine their health effects need to be further investigated to optimise their use. A mouse model would be a valuable tool, but few such studies have been published to date. We investigated the effects of oat bran on plasma cholesterol and lipoproteins in two substrains of C57BL/6 mice. Western diet was made atherogenic by the addition of 0.8 % cholesterol and 0.1 % cholic acid. After 4 weeks on atherogenic diet, total plasma cholesterol had increased from 1.86-2.53 to 3.77-4.40 mmol/l. In C57BL/6NCrl mice, inclusion of 27 and 40 % oat bran reduced total plasma cholesterol by 19 and 24 %, respectively, reduced the shift from HDL to LDL+VLDL and caused increased faecal cholesterol excretion. There was no effect of oat bran on plasma levels of the inflammatory markers fibrinogen, serum amyloid A or TNF-alpha. Contrary to findings in C57BL/6NCrl mice, there was no sustained effect of oat bran (27 or 40 %) on plasma cholesterol in C57BL/6JBomTac mice after 4 weeks of feeding. Thus, C57BL/6NCrl mice fed an atherogenic diet are a good model for studies of physiological effects of oats, whereas a substrain derived from C57BL/6J, raised in a different breeding environment and likely possessing functional genetic differences from C57BL/6N, is considerably less responsive to oats. The present finding that two substrains of mice respond differently to oats is of practical value, but can also help to elucidate mechanisms of the cholesterol-lowering effect of oats.


Assuntos
Anticolesterolemiantes/farmacologia , Avena , Colesterol/genética , Dieta Aterogênica , Variação Genética , Lipoproteínas/genética , Preparações de Plantas/farmacologia , Animais , Anticolesterolemiantes/uso terapêutico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Colesterol/sangue , Ácido Cólico/administração & dosagem , Gorduras na Dieta/metabolismo , Modelos Animais de Doenças , Fezes , Feminino , Hipercolesterolemia/tratamento farmacológico , Mediadores da Inflamação/sangue , Lipoproteínas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Preparações de Plantas/uso terapêutico , Sementes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA