Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(48): 56567-56574, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988059

RESUMO

SiGe/Si multilayer is the core structure of the active area of gate-all-around field-effect transistors and semiconductor quantum computing devices. In this paper, high-quality SiGe/Si multilayers have been grown by a reduced-pressure chemical vapor deposition system. The effects of temperature, pressure, interface processing (dichlorosilane (SiH2Cl2, DCS) and hydrogen chloride (HCl)) on improving the transition thickness of SiGe to Si interfaces were investigated. The interface quality was characterized by transmission electron microscopy/atomic force microscopy/high-resolution X-ray diffraction methods. It was observed that limiting the migration of Ge atoms in the interface was critical for optimizing a sharp interface, and the addition of DCS was found to decrease the interface transition thickness. The change of the interfacial transition layer is not significant in the short treatment time of HCl. When the processing time of HCl is increased, the internal interface is optimized to a certain extent but the corresponding film thickness is also reduced. This study provides technical support for the acquisition of an abrupt interface and will have a very favorable influence on the performance improvement of miniaturized devices in the future.

2.
ACS Appl Mater Interfaces ; 15(23): 28799-28805, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37166277

RESUMO

We develop a method to fabricate an undoped Ge quantum well (QW) under a 32 nm relaxed Si0.2Ge0.8 shallow barrier. The bottom barrier contains Si0.2Ge0.8 (650 °C) and Si0.1Ge0.9 (800 °C) such that variation of Ge content forms a sharp interface that can suppress the threading dislocation density (TDD) penetrating into the undoped Ge quantum well. The SiGe barrier introduces enough in-plane parallel strain (ε∥ strain -0.41%) in the Ge quantum well. The heterostructure field-effect transistors with a shallow buried channel obtain an ultrahigh two-dimensional hole gas (2DHG) mobility over 2 × 106 cm2/(V s) and a very low percolation density of (5.689 ± 0.062) × 1010 cm-2. The fractional indication is also observed at high density and high magnetic fields. This strained germanium as a noise mitigation material provides a platform for integration of quantum computation with a long coherence time and fast all-electrical manipulation.

3.
Fish Shellfish Immunol ; 99: 473-482, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32070785

RESUMO

Salinity is a limiting factor for many marine organisms, including fishes. The shift in the ambient salinity can cause osmotic stress and arouse immune responses in fish. In this study, yellowfin seabream (Acanthopagrus latus), a euryhaline marine teleost, was used to investigate immune responses of different tissues (gill, liver, and muscle) under hypoosmotic stress. Comparative transcriptomic and physiological analyses of three tissues were conducted after fish exposed to the fresh water (FW, salinity = 0 ppt), low-saline water (LW, salinity = 3 ppt), and brackish water (BW, salinity = 6 ppt) for 8 days. The results showed that hypoosmotic stress dramatically altered the gene expression of three tissues in yellowfin seabream; The investigation of differentially expressed genes (DEGs) related to osmoregulation and immune response indicated that T cell-mediate immunity pathways were essential to tackle such stress. In terms of tissues, gill was found to be the most sensitive tissue under hypoosmotic stress by enhancing of Na+K+-ATPase activity and preventing the loss of Na+ and K+; Liver, on the other hand, was under the most sever oxidative stress indicated by the fluctuation of SOD, CAT activities and the MDA content; In contrast, muscle had the least osmoregulation and immune related response. We also identified several potential candidate genes, which may serve as gene indicators to identify the stressor. Overall, this study provides preliminary mechanistic insights into hypoosmotic stress adaption of aquatic organism.


Assuntos
Osmorregulação , Pressão Osmótica , Salinidade , Dourada/genética , Dourada/imunologia , Linfócitos T/imunologia , Aclimatação , Animais , Água Doce , Perfilação da Expressão Gênica , Brânquias/imunologia , Fígado/imunologia , Músculos/imunologia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA