Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 147: 102503, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38729070

RESUMO

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.

2.
Tuberculosis (Edinb) ; 138: 102301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603391

RESUMO

Mycobacterium abscessus is a non-tuberculous mycobacterium (NTM) able to cause invasive pulmonary infections, named NTM pulmonary disease. The therapeutic approaches are limited, and infections are difficult to treat due to antibiotic resistance conferred by an impermeable cell wall, drug efflux pumps, or drug-modifying enzymes. The development of new therapeutics, intended as antimicrobials or drug limiting immunopathology, is urgently necessary. In this context, the preclinical murine models of M. abscessus represent a useful tool to validate and translate in vitro-proofed concepts. These in vivo models are essential for developing new targets and drugs, ameliorating our knowledge in combinatorial regimens of current existing antibiotic treatments, and repurposing existing drugs for new therapeutic options against M. abscessus infection. Thus, this review aims at providing an overview of the current state of the art of preclinical murine models to study M. abscessus lung infection and its exploitation for new therapeutic approaches. This review discusses the murine models available focusing on the different bacterial challenges (aerosol, intranasal, intratracheal, and intravenous administrations), murine genetic background, and additional bacterial related factors. Then, we discuss the successful preclinical models for M. abscessus respiratory infection exploited to study the efficacy and safety of new antimicrobials or to determine the best dosage and route of administration of existing drugs. Finally, we present the current murine models exploited to develop new therapeutic approaches to modulate the host immune response and limit immunopathological damage during M. abscessus lung disease. In conclusion, our review article provides an overview of current and available murine models to characterize acute or chronic infections and to study the outcome of new therapeutic strategies against M. abscessus lung infection.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Pneumonia , Humanos , Animais , Camundongos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Modelos Animais de Doenças , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumopatias/tratamento farmacológico , Pneumonia/patologia , Pulmão/microbiologia , Testes de Sensibilidade Microbiana
4.
Front Immunol ; 13: 927049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837393

RESUMO

Non-tuberculous mycobacteria (NTM) are ubiquitous environmental microorganisms capable of a wide range of infections that primarily involve the lymphatic system and the lower respiratory tract. In recent years, cases of lung infection sustained by NTM have been steadily increasing, due mainly to the ageing of the population with underlying lung disease, the enlargement of the cohort of patients undergoing immunosuppressive medications and the improvement in microbiologic diagnostic techniques. However, only a small proportion of individuals at risk ultimately develop the disease due to reasons that are not fully understood. A better understanding of the pathophysiology of NTM pulmonary disease is the key to the development of better diagnostic tools and therapeutic targets for anti-mycobacterial therapy. In this review, we cover the various types of interactions between NTM and lymphoid effectors of innate and adaptive immunity. We also give a brief look into the mechanism of immune exhaustion, a phenomenon of immune dysfunction originally reported for chronic viral infections and cancer, but recently also observed in the setting of mycobacterial diseases. We try to set the scene to postulate that a better knowledge of immune exhaustion can play a crucial role in establishing prognostic/predictive factors and enabling a broader investigation of immune-modulatory drugs in the experimental treatment of NTM pulmonary disease.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Mycobacterium , Pneumonia Bacteriana , Humanos , Linfócitos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas
5.
Sci Rep ; 12(1): 7606, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534648

RESUMO

Infectious and inflammatory stimuli elicit the generation of chitinase-3-like protein-1 (CHI3L1), involved in tissue damage, repair and remodeling. We evaluated whether plasma CHI3L1 at disease onset predicts clinical outcome of patients with Coronavirus 2019 (COVID-19) disease. Blood from 191 prospectively followed COVID-19 patients were collected at hospital admission between March 18th and May 5th, 2020. Plasma from 80 survivors was collected one month post-discharge. Forty age- and sex-matched healthy volunteers served as controls. Primary outcome was transfer to intensive care unit (ICU) or death. CHI3L1 was higher in COVID-19 patients than controls (p < 0.0001). Patients with unfavorable outcome (41 patients admitted to ICU, 47 died) had significantly higher CHI3L1 levels than non-ICU survivors (p < 0.0001). CHI3L1 levels abated in survivors one month post-discharge, regardless of initial disease severity (p < 0.0001), although remaining higher than controls (p < 0.05). Cox regression analysis revealed that CHI3L1 levels predict primary outcome independently of age, sex, comorbidities, degree of respiratory insufficiency and systemic inflammation or time from symptom onset to sampling (p < 0.0001). Kaplan-Meier curve analysis confirmed that patients with CHI3L1 levels above the median (361 ng/mL) had a poorer prognosis (log rank test, p < 0.0001). Plasma CHI3L1 is increased in COVID-19 patients and predicts adverse outcome.


Assuntos
COVID-19 , Quitinases , Assistência ao Convalescente , Proteína 1 Semelhante à Quitinase-3 , Hospitais , Humanos , Alta do Paciente , Estudos Prospectivos
6.
PLoS One ; 17(4): e0267235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35468164

RESUMO

BACKGROUND: Chromogranin A (CgA) and its fragment vasostatin I (VS-I) are secreted in the blood by endocrine/neuroendocrine cells and regulate stress responses. Their involvement in Coronavirus 2019 disease (COVID-19) has not been investigated. METHODS: CgA and VS-I plasma concentrations were measured at hospital admission from March to May 2020 in 190 patients. 40 age- and sex-matched healthy volunteers served as controls. CgA and VS-I levels relationship with demographics, comorbidities and disease severity was assessed through Mann Whitney U test or Spearman correlation test. Cox regression analysis and Kaplan Meier survival curves were performed to investigate the impact of the CgA and VS-I levels on in-hospital mortality. RESULTS: Median CgA and VS-I levels were higher in patients than in healthy controls (CgA: 0.558 nM [interquartile range, IQR 0.358-1.046] vs 0.368 nM [IQR 0.288-0.490] respectively, p = 0.0017; VS-I: 0.357 nM [IQR 0.196-0.465] vs 0.144 nM [0.144-0.156] respectively, p<0.0001). Concentration of CgA, but not of VS-I, significantly increased in patients who died (n = 47) than in survivors (n = 143) (median 0.948 nM [IQR 0.514-1.754] vs 0.507 nM [IQR 0.343-0.785], p = 0.00026). Levels of CgA were independent predictors of in-hospital mortality (hazard ratio 1.28 [95% confidence interval 1.077-1.522], p = 0.005) when adjusted for age, number of comorbidities, respiratory insufficiency degree, C-reactive protein levels and time from symptom onset to sampling. Kaplan Meier curves revealed a significantly increased mortality rate in patients with CgA levels above 0.558 nM (median value, log rank test, p = 0.001). CONCLUSION: Plasma CgA levels increase in COVID-19 patients and represent an early independent predictor of mortality.


Assuntos
COVID-19 , Cromogranina A , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Modelos de Riscos Proporcionais
7.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439174

RESUMO

T cells play a prominent role in orchestrating the immune response to viral diseases, but their role in the clinical presentation and subsequent immunity to SARS-CoV-2 infection remains poorly understood. As part of a population-based survey of the municipality of Vo', Italy, conducted after the initial SARS-CoV-2 outbreak, we sampled the T cell receptor (TCR) repertoires of the population 2 months after the initial PCR survey and followed up positive cases 9 and 15 months later. At 2 months, we found that 97.0% (98 of 101) of cases had elevated levels of TCRs associated with SARS-CoV-2. T cell frequency (depth) was increased in individuals with more severe disease. Both depth and diversity (breadth) of the TCR repertoire were positively associated with neutralizing antibody titers, driven mostly by CD4+ T cells directed against spike protein. At the later time points, detection of these TCRs remained high, with 90.7% (78 of 96) and 86.2% (25 of 29) of individuals having detectable signal at 9 and 15 months, respectively. Forty-three individuals were vaccinated by month 15 and showed a significant increase in TCRs directed against spike protein. Taken together, these results demonstrate the central role of T cells in mounting an immune defense against SARS-CoV-2 that persists out to 15 months.


Assuntos
COVID-19 , Linfócitos T CD4-Positivos , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Microbiol Spectr ; 10(1): e0254621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080463

RESUMO

Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and ß-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.


Assuntos
Antibacterianos/administração & dosagem , Fibrose Cística/imunologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/administração & dosagem , Amicacina/administração & dosagem , Amicacina/química , Animais , Antibacterianos/química , Fibrose Cística/complicações , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Feminino , Humanos , Lipossomos/química , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/etiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia , Fagossomos/imunologia , Fosfatos de Fosfatidilinositol/química , Espécies Reativas de Oxigênio/imunologia
9.
Mol Med ; 27(1): 129, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663207

RESUMO

BACKGROUND: Host inflammation contributes to determine whether SARS-CoV-2 infection causes mild or life-threatening disease. Tools are needed for early risk assessment. METHODS: We studied in 111 COVID-19 patients prospectively followed at a single reference Hospital fifty-three potential biomarkers including alarmins, cytokines, adipocytokines and growth factors, humoral innate immune and neuroendocrine molecules and regulators of iron metabolism. Biomarkers at hospital admission together with age, degree of hypoxia, neutrophil to lymphocyte ratio (NLR), lactate dehydrogenase (LDH), C-reactive protein (CRP) and creatinine were analysed within a data-driven approach to classify patients with respect to survival and ICU outcomes. Classification and regression tree (CART) models were used to identify prognostic biomarkers. RESULTS: Among the fifty-three potential biomarkers, the classification tree analysis selected CXCL10 at hospital admission, in combination with NLR and time from onset, as the best predictor of ICU transfer (AUC [95% CI] = 0.8374 [0.6233-0.8435]), while it was selected alone to predict death (AUC [95% CI] = 0.7334 [0.7547-0.9201]). CXCL10 concentration abated in COVID-19 survivors after healing and discharge from the hospital. CONCLUSIONS: CXCL10 results from a data-driven analysis, that accounts for presence of confounding factors, as the most robust predictive biomarker of patient outcome in COVID-19.


Assuntos
COVID-19/diagnóstico , Quimiocina CXCL10/sangue , Doença da Artéria Coronariana/diagnóstico , Diabetes Mellitus/diagnóstico , Hipertensão/diagnóstico , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19/sangue , COVID-19/imunologia , COVID-19/mortalidade , Comorbidade , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/imunologia , Doença da Artéria Coronariana/mortalidade , Creatina/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/imunologia , Diabetes Mellitus/mortalidade , Feminino , Hospitalização , Humanos , Hipertensão/sangue , Hipertensão/imunologia , Hipertensão/mortalidade , Imunidade Humoral , Imunidade Inata , Inflamação , Unidades de Terapia Intensiva , L-Lactato Desidrogenase/sangue , Contagem de Leucócitos , Linfócitos/imunologia , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/patologia , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Análise de Sobrevida
10.
Diabetes Metab ; 47(6): 101268, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333093

RESUMO

AIM: Obesity is a risk factor for COVID-19, but the underlying mechanisms are unclear. We investigated the role of adiponectin (an anti-inflammatory adipokine), leptin (a pro-inflammatory adipokine) and their ratio (Adpn/Lep) in this context. DESIGN: Single-centre, prospective observational study. METHODS: Adiponectin and leptin were measured in 60 COVID-19 patients with mild (not hospitalised, n=11), moderate (hospitalised but not requiring intensive care, n=25) and severe (admission to the intensive care unit [ICU] or death, n=24) disease. RESULTS: Adiponectin and leptin levels were similar across severity groups, but patients with moderate severity had the highest Adpn/Lep ratio (1.2 [0.5; 2.0], 5.0 [1.6; 11.2], 2.1 [1.0; 3.6] in mild, moderate and severe disease; P = 0.019). Adpn/Lep, but not adiponectin or leptin alone, correlated with systemic inflammation (C reactive protein, CRP: Spearman's rho 0.293, P = 0.023). When dividing patients into Adpn/Lep tertiles, adiponectin was highest, whereas leptin was lowest in the third (highest) tertile. Patients in the highest Adpn/Lep tertile had numerically lower rates of obesity, diabetes and hypertension, and lower rates of death or admission to ICU versus other tertiles. At linear regression in the whole cohort, CRP significantly predicted Adpn/Lep (ß 0.291, P = 0.022), while female gender (ß -0.289, P = 0.016), diabetes (ß -0.257, P = 0.028), and hypertension (ß -239, P = 0.043) were negative predictors. CONCLUSIONS: We speculate that the rise in Adpn/Lep, due to increased adiponectin and reduced leptin, is a compensatory response to systemic inflammation. In patients with worse cardiometabolic health (e.g. diabetes, hypertension) this mechanism might be blunted, possibly contributing to higher mortality.


Assuntos
Adiponectina , COVID-19 , Leptina , Adiponectina/sangue , COVID-19/mortalidade , COVID-19/terapia , Feminino , Humanos , Inflamação/sangue , Leptina/sangue , Masculino , Estudos Prospectivos , Análise de Sobrevida
11.
J Neurol ; 268(12): 4436-4442, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33973106

RESUMO

BACKGROUND AND AIMS: Patients infected with SARS-CoV-2 range from asymptomatic, to mild, moderate or severe disease evolution including fatal outcome. Thus, early predictors of clinical outcome are highly needed. We investigated markers of neural tissue damage as a possible early sign of multisystem involvement to assess their clinical prognostic value on survival or transfer to intensive care unit (ICU). METHODS: We collected blood from 104 patients infected with SARS-CoV-2 the day of admission to the emergency room and measured blood neurofilament light chair (NfL), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and total tau protein levels. RESULTS: We found that NfL, GFAP, and tau were significantly increased in patients with fatal outcome, while NfL and UCH-L1 in those needing ICU transfer. ROC and Kaplan-Meier curves indicated that total tau levels at admission accurately predict mortality. CONCLUSIONS: Blood neural markers may provide additional prognostic value to conventional biomarkers used to predict COVID-19 outcome.


Assuntos
COVID-19 , Filamentos Intermediários , Proteínas de Neurofilamentos/sangue , Proteínas tau/sangue , Biomarcadores , COVID-19/mortalidade , Proteína Glial Fibrilar Ácida/sangue , Humanos , Ubiquitina Tiolesterase/sangue
12.
ERJ Open Res ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33778054

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is commonly isolated from airways of patients suffering from chronic respiratory diseases, such as COPD or cystic fibrosis (CF). However, to what extent NTHi long-term infection contributes to the lung inflammatory burden during chronic airway disease is still controversial. Here, we exploited human respiratory samples from a small cohort of CF patients and found that patients chronically infected with NTHi had significantly higher levels of interleukin (IL)-8 and CXCL1 than those who were not infected. To better define the impact of chronic NTHi infection in fuelling inflammatory response in chronic lung diseases, we developed a new mouse model using both laboratory and clinical strains. Chronic NTHi infection was associated with chronic inflammation of the lung, characterised by recruitment of neutrophils and cytokine release keratinocyte-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2), granulocyte colony-stimulating factor (G-CFS), IL-6, IL-17A and IL-17F) at 2 and 14 days post-infection. An increased burden of T-cell-mediated response (CD4+ and γδ cells) and higher levels of pro-matrix metalloproteinase 9 (pro-MMP9), known to be associated with tissue remodelling, were observed at 14 days post-infection. Of note we found that both CD4+IL-17+ cells and levels of IL-17 cytokines were enriched in mice at advanced stages of NTHi chronic infection. Moreover, by immunohistochemistry we found CD3+, B220+ and CXCL-13+ cells localised in bronchus-associated lymphoid tissue-like structures at day 14. Our results demonstrate that chronic NTHi infection exerts a pro-inflammatory activity in the human and murine lung and could therefore contribute to the exaggerated burden of lung inflammation in patients at risk.

14.
PLoS One ; 7(8): e43153, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905220

RESUMO

The mechanisms governing the epidemiology dynamics and success determinants of a specific healthcare-associated methicillin-resistant S. aureus (HA-MRSA) clone in hospital settings are still unclear. Important epidemiological changes have occurred in Europe since 2000 that have been related to the appearance of the ST22-IV clone. Between 2006 and 2010, we observed the establishment of the ST22-IV clone displacing the predominant Italian clone, ST228-I, in a large Italian university hospital. To investigate the factors associated with a successful spread of epidemic MRSA clones we studied the biofilm production, the competitive behavior in co-culture, the capacity of invasion of the A549 cells, and the susceptibility to infection in a murine model of acute pneumonia of the two major HA-MRSA clones, ST22-IV and ST228-I. We showed that persistence of ST22-IV is associated with its increased biofilm production and capacity to inhibit the growth of ST228-I in co-culture. Compared to ST228-I, ST22-IV had a significantly higher capacity to invade the A549 cells and a higher virulence in a murine model of acute lung infection causing severe inflammation and determining death in all the mice within 60 hours. On the contrary, ST228-I was associated with mice survival and clearance of the infection. ST22-IV, compared with ST228-I, caused a higher number of persistent, long lasting bacteremia. These data suggest that ST22-IV could have exploited its capacity to i) increase its biofilm production over time, ii) maintain its growth kinetics in the presence of a competitor and iii) be particularly invasive and virulent both in vitro and in vivo, to replace other well-established MRSA clones, becoming the predominant European clone.


Assuntos
Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/microbiologia , Idoso , Animais , Biofilmes , Linhagem Celular Tumoral , Técnicas de Cocultura , Infecção Hospitalar , Hospitais , Humanos , Cinética , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infecções Estafilocócicas/genética , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA