Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37683041

RESUMO

Extracellular vesicles (EVs) (exossomes, microvesicles and apoptotic bodies) have been well acknowledged as mediators of intercellular communications in prokaryotes and eukaryotes. Lipids are essential molecular components of EVs but at the moment the knowledge about the lipid composition and the function of lipids in EVs is limited and as for now none lipidomic studies in Giardia EVs was described. Therefore, the focus of the current study was to conduct, for the first time, the characterization of the polar lipidome, namely phospholipid and sphingolipid profiles of G. lamblia trophozoites, microvesicles (MVs) and exosomes, using C18-Liquid Chromatography-Mass Spectrometry (C18-LC-MS) and Tandem Mass Spectrometry (MS/MS). A total of 162 lipid species were identified and semi-quantified, in the trophozoites, or in the MVs and exosomes belonging to 8 lipid classes, including the phospholipid classes phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), cardiolipins (CL), the sphingolipid classes sphingomyelin (SM) and ceramides (Cer), and cholesterol (ST), and 3 lipid subclasses that include lyso PC (LPC), lyso PE (LPE) and lyso PG (LPG), but showing different abundances. This work also identified, for the first time, in G. lamblia trophozoites, the lipid classes CL, Cer and ST and subclasses of LPC, LPE and LPG. Univariate and multivariate analysis showed clear discrimination of lipid profiles between trophozoite, exosomes and MVs. The principal component analysis (PCA) plot of the lipidomics dataset showed clear discrimination between the three groups. Future studies focused on the composition and functional properties of Giardia EVs may prove crucial to understand the role of lipids in host-parasite communication, and to identify new targets that could be exploited to develop novel classes of drugs to treat giardiasis.


Assuntos
Vesículas Extracelulares , Gastrópodes , Giardia lamblia , Giardíase , Animais , Lipidômica , Espectrometria de Massas em Tandem , Giardia , Ceramidas , Lecitinas , Fosfolipídeos , Esfingolipídeos , Cardiolipinas
2.
Food Waterborne Parasitol ; 30: e00190, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36923349

RESUMO

Foodborne outbreaks are often associated with the consumption of salads. However, published studies on the detection of foodborne pathogens in ready-to-eat salads are scarce. The aim of this study was to detect Giardia duodenalis and Cryptosporidium DNA in ready-to-eat salads, by applying techniques of molecular biology to study the frequency of contamination in salads. A total of 100 packages of ready-to-eat salads containing assorted leafy green vegetables were randomly purchased from hypermarkets located in central regions of Portugal (Coimbra and Viseu). Nested-PCR and qPCR methods were used to detect G. duodenalis and Cryptosporidium DNA. Species and assemblages of the parasites were identified by sequence analysis and PCR. Eighteen of the 100 samples (18%) were positive for G. duodenalis and twelve were sequenced and identified as assemblage A. Cryptosporidium spp. were not detected in any salads. Overall, pre-harvest and post-harvest preventive measures may be need for G. duodenalis control throughout the food production industry, from the field to consumers.

3.
Microorganisms ; 10(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557675

RESUMO

Parasitic diseases are an important worldwide problem threatening human health and affect millions of people. Acute diarrhea, intestinal bleeding, malabsorption of nutrients and nutritional deficiency are some of the issues related to intestinal parasitic infections. Parasites are experts in subvert the host immune system through different kinds of mechanisms. There are evidences that extracellular vesicles (EVs) have an important role in dissemination of the disease and in modulating the host immune system. Released by almost all types of cells, these nanovesicles are a natural secretory product containing multiple components of interest. The EVs are classified as apoptotic bodies, microvesicles, exosomes, ectosomes, and microparticles, according to their physical characteristics, biochemical composition and cell of origin. Interestingly, EVs play an important role in intercellular communication between parasites as well as with the host cells. Concerning Giardia lamblia, it is known that this parasite release EVs during it life cycle that modulate the parasite growth and adherence as well the immune system of the host. Here we review the recently updates on protozoa EVs, with particular emphasis on the role of EVs released by the flagellate protozoa G. lamblia in cellular communication and its potential for future applications as vaccine, therapeutic agent, drug delivery system and as diagnostic or prognostic biomarker.

4.
Sci Rep ; 10(1): 6234, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277133

RESUMO

The protozoan Giardia lamblia is the most common cause of parasitic gastrointestinal infection worldwide. The parasite developed sophisticated, yet not completely disclosed, mechanisms to escape immune system and growth in the intestine. To further understand the interaction of G. lamblia with host immune cells, we investigated the ability of parasites to modulate the canonical activation of mouse macrophages (Raw 264.7 cell line) and human monocyte-derived macrophages triggered by the TLR4 agonist, lipopolysaccharide (LPS). We observed that G. lamblia impairs LPS-evoked pro-inflammatory status in these macrophage-like cells through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase expression and subsequent NO production. This effect was in part due to the activity of three G. lamblia proteases, a 135 kDa metalloprotease and two cysteine proteases with 75 and 63 kDa, that cleave the p65RelA subunit of the nuclear factor-kappa B (NF-κB). Moreover, Tnf and Ccl4 transcription was increased in the presence of the parasite. Overall, our data indicates that G. lamblia modulates macrophages inflammatory response through impairment of the NF-κB, thus silencing a crucial signaling pathway of the host innate immune response.


Assuntos
Giardia lamblia/imunologia , Giardíase/imunologia , Interações Hospedeiro-Parasita/imunologia , Macrófagos/imunologia , Fator de Transcrição RelA/metabolismo , Animais , Buffy Coat/citologia , Giardíase/parasitologia , Voluntários Saudáveis , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Camundongos , Peptídeo Hidrolases/metabolismo , Cultura Primária de Células , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Células RAW 264.7 , Fator de Transcrição RelA/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA