Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(9): e0068024, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39158347

RESUMO

Betacoronaviruses encode a conserved accessory gene within the +1 open reading frame (ORF) of nucleocapsid called the internal N gene. This gene is referred to as "I" for mouse hepatitis virus (MHV), ORF9b for severe acute respiratory CoV (SARS-CoV) and SARS-CoV-2, and ORF8b for Middle East respiratory syndrome CoV (MERS-CoV). Previous studies have shown ORF8b and ORF9b have immunoevasive properties, while the only known information for MHV I is its localization within the virion of the hepatotropic/neurotropic A59 strain of MHV. Whether MHV I is an innate immune antagonist or has other functions has not been evaluated. In this report, we show that the I protein of the neurotropic JHM strain of MHV (JHMV) lacks a N terminal domain present in other MHV strains, has immunoevasive properties, and is a component of the virion. Genetic deletion of JHMV I (rJHMVIΔ57-137) resulted in a highly attenuated virus both in vitro and in vivo that displayed a post RNA replication/transcription defect that ultimately resulted in fewer infectious virions packaged compared with wild-type virus. This phenotype was only seen for rJHMVIΔ57-137, suggesting the structural changes predicted for A59 I altered its function, as genetic deletion of A59 I did not change viral replication or pathogenicity. Together, these data show that JHMV I both acts as a mild innate immune antagonist and aids in viral assembly and infectious virus production, and suggest that the internal N proteins from different betacoronaviruses have both common and virus strain-specific properties.IMPORTANCECoV accessory genes are largely studied in overexpression assays and have been identified as innate immune antagonists. However, functions identified after overexpression are often not confirmed in the infected animal host. Furthermore, some accessory proteins are components of the CoV virion, but their role in viral replication and release remains unclear. Here, we utilized reverse genetics to abrogate expression of a conserved CoV accessory gene, the internal N ("I") gene, of the neurotropic JHMV strain of MHV and found that loss of the I gene resulted in a post replication defect that reduced virion assembly and ultimately infectious virus production, while also increasing some inflammatory molecule expression. Thus, the JHMV I protein has roles in virion assembly that were previously underappreciated and in immunoevasion.


Assuntos
Vírus da Hepatite Murina , Proteínas Virais , Replicação Viral , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/patogenicidade , Vírus da Hepatite Murina/imunologia , Vírus da Hepatite Murina/fisiologia , Animais , Camundongos , Virulência , Proteínas Virais/metabolismo , Proteínas Virais/genética , Vírion/metabolismo , Imunidade Inata , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Linhagem Celular , Fases de Leitura Aberta , Humanos
2.
J Biol Chem ; 297(6): 101362, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756886

RESUMO

The Nsp9 replicase is a conserved coronaviral protein that acts as an essential accessory component of the multi-subunit viral replication/transcription complex. Nsp9 is the predominant substrate for the essential nucleotidylation activity of Nsp12. Compounds specifically interfering with this viral activity would facilitate its study. Using a native mass-spectrometry-based approach to screen a natural product library for Nsp9 binders, we identified an ent-kaurane natural product, oridonin, capable of binding to purified SARS-CoV-2 Nsp9 with micromolar affinities. By determining the crystal structure of the Nsp9-oridonin complex, we showed that oridonin binds through a conserved site near Nsp9's C-terminal GxxxG-helix. In enzymatic assays, oridonin's binding to Nsp9 reduces its potential to act as substrate for Nsp12's Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain. We also showed using in vitro cellular assays oridonin, while cytotoxic at higher doses has broad antiviral activity, reducing viral titer following infection with either SARS-CoV-2 or, to a lesser extent, MERS-CoV. Accordingly, these preliminary findings suggest that the oridonin molecular scaffold may have the potential to be developed into an antiviral compound to inhibit the function of Nsp9 during coronaviral replication.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Diterpenos do Tipo Caurano/farmacologia , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , COVID-19/metabolismo , COVID-19/virologia , Chlorocebus aethiops , Diterpenos do Tipo Caurano/química , Humanos , Simulação de Acoplamento Molecular , Proteínas de Ligação a RNA/química , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Células Vero , Proteínas não Estruturais Virais/química
3.
J Biol Chem ; 297(3): 101018, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331944

RESUMO

The coronaviral nonstructural protein 9 (Nsp9) is essential for viral replication; it is the primary substrate of Nsp12's pseudokinase domain within the viral replication transcription complex, an association that also recruits other components during different stages of RNA reproduction. In the unmodified state, Nsp9 forms an obligate homodimer via an essential GxxxG protein-interaction motif, but its ssRNA-binding mechanism remains unknown. Using structural biological techniques, here we show that a base-mimicking compound identified from a small molecule fragment screen engages Nsp9 via a tetrameric Pi-Pi stacking interaction that induces the formation of a parallel trimer-of-dimers. This oligomerization mechanism allows an interchange of "latching" N-termini, the charges of which contribute to a series of electropositive channels that suggests a potential interface for viral RNA. The identified pyrrolo-pyrimidine compound may also serve as a potential starting point for the development of compounds seeking to probe Nsp9's role within SARS-CoV-2 replication.


Assuntos
COVID-19/virologia , Nucleotídeos de Pirimidina/metabolismo , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , RNA/metabolismo , SARS-CoV-2/fisiologia , Replicação Viral
4.
Cell Host Microbe ; 29(7): 1052-1062, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34022154

RESUMO

COVID-19 can result in severe disease characterized by significant immunopathology that is spurred by an exuberant, yet dysregulated, innate immune response with a poor adaptive response. A limited and delayed interferon I (IFN-I) and IFN-III response results in exacerbated proinflammatory cytokine production and in extensive cellular infiltrates in the respiratory tract, resulting in lung pathology. The development of effective therapeutics for patients with severe COVID-19 depends on our understanding of the pathological elements of this unbalanced innate immune response. Here, we review the mechanisms by which SARS-CoV-2 both activates and antagonizes the IFN and inflammatory response following infection, how a dysregulated cytokine and cellular response contributes to immune-mediated pathology in COVID-19, and therapeutic strategies that target elements of the innate response.


Assuntos
COVID-19/imunologia , Imunidade Inata/imunologia , Interferons/uso terapêutico , SARS-CoV-2/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Interferons/metabolismo , Cinética , Interferon lambda , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA