Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(12): 9053-9062, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465964

RESUMO

Photoreceptor cells of vertebrates feature ultrastructural membranes interspersed with abundant photosensitive ion pumps to boost signal generation and realize high gain in dim light. In light of this, superstructured optoionic heterojunctions (SSOHs) with cation-selective nanochannels are developed for manipulating photo-driven ion pumping. A template-directed bottom-up strategy is adopted to sequentially assemble graphene oxide (GO) and PEDOT:PSS into heterogeneous membranes with sculptured superstructures, which feature programmable variation in membrane topography and contain a donor-acceptor interface capable of maintaining electron-hole separation upon photoillumination. Such elaborate design endows SSOHs with a much higher magnitude of photo-driven ion flux against a concentration gradient in contrast to conventional optoionic membranes with planar configuration. This can be ascribed to the buildup of an enhanced transmembrane potential owing to the effective separation of photogenerated carriers at the heterojunction interface and the increase of energy input from photoillumination due to a synergistic effect of reflection reduction, broad-angle absorption, and wide-waveband absorption. This work unlocks the significance of membrane topographies in photo-driven transmembrane transportation and proposes such a universal prototype that could be extended to other optoionic membranes to develop high-performance artificial ion pumps for energy conversion and sensing.


Assuntos
Elétrons , Bombas de Íon , Animais , Potenciais da Membrana , Meios de Transporte , Células Fotorreceptoras
2.
Langmuir ; 40(3): 1892-1901, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38192235

RESUMO

Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films. The gas foaming of the PEC films can be achieved upon exposure to UV illumination under water, where the films are plasticized and the gaseous products from the photolysis of foaming agents afford the formation, expanding, and merging of numerous bubbles. The porosity and morphology of the resulting porous films can be customized by tuning film composition, foaming conditions, and especially the degree of plasticizing effect, illustrating the high flexibility of this hydroplastic foaming method. Due to the rapid initiation of gas foaming, the present method enables the formation of porous structures via an instant one-step process, much more efficient than those existing strategies for porous PEC materials. More importantly, such a pore-forming mechanism might be extended to other hydroplastic materials (e.g., biopolymers) and help to yield hydroplasticity-based processing strategies.

3.
Small ; 19(4): e2205003, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424182

RESUMO

Two-dimensional nanofluidic membranes offer great opportunities for developing efficient and robust devices for ionic/water-nexus energy harvesting. However, low counterion concentration and long pathway through limited ionic flux restrict their output performance. Herein, it is demonstrated that rapid diffusion kinetics can be realized in two-dimensional nanofluidic membranes by introducing in-plane holes across nanosheets, which not only increase counterion concentration but also shorten pathway length through the membranes. Thus, the holey membranes exhibited an enhanced performance relative to the pristine ones in terms of osmotic energy conversion. In particular, a biomimetic multilayered membrane sequentially assembled from pristine and holey sections offers an optimized combination of selectivity and permeability, therefore generating a power density up to 6.78 W m-2 by mixing seawater and river water, superior to the majority of the state-of-the-art lamellar nanofluidic membranes. This work highlights the importance of channel morphologies and presents a general strategy for effectively improving ion transport through lamellar membranes for high-performance nanofluidic devices.

4.
Dalton Trans ; 51(30): 11558-11566, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35848404

RESUMO

Six iron(0) tricarbonyl complexes (1a-f) with a η4-1-azadiene moiety were prepared and their performance in the hydroboration of unsaturated organic compounds was investigated. All the complexes exhibit catalytic activity towards hydroboration of ketones, aldehydes and aldimines with pinacolborane (HBpin) as a hydride source to lead to secondary alcohols, primary alcohols, and secondary amines, respectively, after hydrolysis of the hydroboration products. Of the iron(0) tricarbonyl complexes, complex 1e is the most robust one and was employed throughout the catalytic investigation. Its preference towards the three types of substrates is as follows: aldimines > aldehydes ≫ ketones. In total, 24 substrates were examined for the catalytic hydroboration reactivity and generally, isolation yields ranging from 40% to 95% were achieved. Mechanistic investigation suggests that the catalytic hydroboration of the substrates proceeds via intramolecular hydride transfer without going through an Fe-H intermediate. As indicated by 1H NMR spectroscopic monitoring, the substrates and the borane agent bind to the iron centre and the imine N atom, respectively, which facilitates the hydride transfer by activating the B-H bond and polarizing the double bond of the substrates.


Assuntos
Aldeídos , Boranos , Álcoois/química , Aldeídos/química , Boranos/química , Catálise , Cetonas/química
5.
Inorg Chem ; 60(19): 14540-14543, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515468

RESUMO

Ternary nanomaterials Cu-Cu2O/rGO-NH2 (rGO = reduced graphene oxide) exhibited a synergistic effect in the quantitative catalysis of selective aerobic oxidation of benzyl alcohol. The synergistic effect is attributed to the heterojunctions among the three components and in intrinsic nature, the formation of the heterojunctions lowered the conduction band (CB) energy level and raised the valence band (VB) energy level of the main catalyst Cu2O, which eases electron transfer from the catalyst to O2 in its activation and from the substrate to the catalyst in the oxidation, respectively.

6.
Chembiochem ; 21(24): 3618-3624, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776422

RESUMO

Immunogenic cell death (ICD) offers a method of stimulating the immune system to attack and remove cancer cells. We report a copper(II) complex containing a Schiff base ligand and a polypyridyl ligand, 4, capable of inducing ICD in breast cancer stem cells (CSCs). Complex 4 kills both bulk breast cancer cells and breast CSCs at sub-micromolar concentrations. Notably, 4 exhibits greater potency (one order of magnitude) towards breast CSCs than salinomycin (an established breast CSC-potent agent) and cisplatin (a clinically approved anticancer drug). Epithelial spheroid studies show that 4 is able to selectively inhibit breast CSC-enriched HMLER-shEcad spheroid formation and viability over non-tumorigenic breast MCF10 A spheroids. Mechanistic studies show that 4 operates as a Type II ICD inducer. Specifically, 4 readily enters the endoplasmic reticulum (ER) of breast CSCs, elevates intracellular reactive oxygen species (ROS) levels, induces ER stress, evokes damage-associated molecular patterns (DAMPs), and promotes breast CSC phagocytosis by macrophages. As far as we are aware, 4 is the first metal complex to induce ICD in breast CSCs and promote their engulfment by immune cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Antineoplásicos/química , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Cobre/química , Cobre/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/imunologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/imunologia , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Morte Celular Imunogênica/imunologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Espécies Reativas de Oxigênio/imunologia , Bases de Schiff/química , Bases de Schiff/farmacologia , Relação Estrutura-Atividade
7.
Angew Chem Int Ed Engl ; 59(40): 17423-17428, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32578316

RESUMO

Osmotic energy, obtained through different concentrations of salt solutions, is recognized as a form of a sustainable energy source. In the past years, membranes derived from asymmetric aromatic compounds have attracted attention because of their low cost and high performance in osmotic energy conversion. The membrane formation process, charging state, functional groups, membrane thickness, and the ion-exchange capacity of the membrane could affect the power generation performance. Among asymmetric membranes, a bipolar membrane could largely promote the ion transport. Here, two polymers with the same poly(ether sulfone) main chain but opposite charges were synthesized to prepare bipolar membranes by a nonsolvent-induced phase separation (NIPS) and spin-coating (SC) method. The maximum power density of the bipolar membrane reaches about 6.2 W m-2 under a 50-fold salinity gradient, and this result can serve as a reference for the design of bipolar membranes for osmotic energy conversion systems.

8.
RSC Adv ; 10(44): 26142-26150, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519734

RESUMO

In this work, core-shell Fe3O4@Cu2O and Fe3O4@Cu2O-Cu nanomaterials for aerobic oxidation of benzylic alcohols are reported with 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and N-methylimidazole (NMI) as the co-catalysts. To anchor Cu2O nanoparticles around the magnetic particles under solvothermal conditions, the magnetic material Fe3O4 was modified by grafting a layer of l-lysine (l-Lys) to introduce -NH2 groups at the surface of the magnetic particles. With amine groups as the anchor, Cu(NO3)2 was used to co-precipitate the desired Cu2O by using ethylene glycol as the reducing agent. Prolonging the reaction time would lead to over-reduced forms of the magnetic materials in the presence of copper, Fe3O4@Cu2O-Cu. The nanomaterials and its precursors were fully characterized by a variety of spectroscopic techniques. In combination with both TEMPO and NMI, these materials showed excellent catalytic activities in aerobic oxidation of benzylic alcohols under ambient conditions. For most of the benzylic alcohols, the conversion into aldehydes was nearly quantitative with aldehydes as the sole product. The materials were recyclable and robust. Up to 7 repeat runs, its activity dropped less than 10%. The over-reduced materials, Fe3O4@Cu2O-Cu, exhibited slightly better performance in durability. The magnetic properties allowed easy separation after reaction by simply applying an external magnet.

9.
Dalton Trans ; 48(18): 5892-5896, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30632590

RESUMO

Copper(ii) coordination complexes, 1 and 2, containing nonsteroidal anti-inflammatory drugs (NSAIDs) potently kill breast cancer stem cells (CSCs) and bulk breast cancer cells. Although detailed biological studies have been conducted to shed light on their mechanism of cytotoxicity, little is known about their molecular level mechanism of action. This biophysical study, aided by the preparation of a fluorophore-containing analogue, 3, reveals that the complexes operate by undergoing reduction to a copper(i) form and releasing the associated NSAIDs.


Assuntos
Antineoplásicos/química , Fenômenos Biofísicos/efeitos dos fármacos , Complexos de Coordenação/química , Cobre/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Feminino , Corantes Fluorescentes/química , Humanos , Indometacina/química , Naproxeno/química , Imagem Óptica/métodos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
10.
Chemistry ; 24(57): 15205-15210, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30052298

RESUMO

The cancer stem cell (CSC) toxicity and mechanism of action of a series of iridium(III) complexes bearing polypridyl and charged 1-methyl-2-(2-pyridyl)pyridinium ligands, 1-4 is reported. The most effective complex (containing 1,10-phenanthroline), 3, kills CSCs and bulk cancer cells with equal potency (in the micromolar range), indicating that it could potentially remove heterogenous tumour populations with a single dose. Encouragingly, 3 also inhibits mammopshere formation to a similar extent as salinomycin, a well-established anti-CSC agent. This complex induces CSC apoptosis by mitochondrial membrane depolarization, inhibition of mitochondrial metabolism, and intracellular reactive oxygen species (ROS) generation. To the best of our knowledge, this is the first study to investigate the anti-CSC properties of iridium complexes.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Irídio/química , Irídio/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitocôndrias/efeitos dos fármacos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenantrolinas/química , Fenantrolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
11.
Dalton Trans ; 47(16): 5755-5763, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29634060

RESUMO

We report the synthesis and characterisation of mono- and di-nuclear cobalt(ii) complexes (1-3) containing L1, a polypyridyl ligand with pyrazole moieties. DNA binding studies suggest that the mono-nuclear complex, 1, binds to DNA via the grooves prior to inducing oxidative DNA cleavage whereas the larger di-nuclear complexes, 2 and 3, bind to DNA via the grooves and through intercalation prior to inducing oxidative DNA cleavage. The cobalt(ii) complexes display micromolar potency towards U2OS (bone osteosarcoma), HepG2 (liver hepatocellular carcinoma), and GM05757 (normal human fibroblast) cells, comparable to clinically used platinum agents, cisplatin and carboplatin. The cellular mechanism of action studies show that the most effective cobalt(ii) complex, 2, enters U2OS cells, penetrates the nucleus, induces genomic DNA damage, and triggers caspase-dependent apoptosis in a p53-independent manner. This study highlights the potential of di-nuclear cobalt(ii) complexes as artificial oxidative metallonucleases and tangible cancer cell-potent agents.

12.
Angew Chem Int Ed Engl ; 57(1): 287-291, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29144008

RESUMO

The breast cancer stem cell (CSC) and bulk breast cancer cell potency of a series of metallopeptides containing dichloro(1,10-phenanthroline)copper(II) and various organelle-targeting peptide sequences is reported. The mitochondria-targeting metallopeptide 1 exploits the higher mitochondrial load in breast CSCs over the corresponding non-CSCs and the vulnerability of breast CSCs to mitochondrial damage to potently and selectively kill breast CSCs. Strikingly, 1 reduces the formation and size of mammospheres to a greater extent than salinomycin, an established CSC-potent agent. Mechanistic studies show that 1 enters CSC mitochondria, induces mitochondrial dysfunction, generates reactive oxygen species (ROS), activates JNK and p38 pathways, and prompts apoptosis. To the best of our knowledge, 1 is the first metallopeptide to selectivity kill breast CSCs in vitro.


Assuntos
Neoplasias da Mama/patologia , Complexos de Coordenação/farmacologia , Metaloproteínas/farmacologia , Mitocôndrias/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Peptídeos/farmacologia , Fenantrolinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Concentração Inibidora 50 , MAP Quinase Quinase 4/metabolismo , Metaloproteínas/química , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Chemistry ; 23(47): 11366-11374, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28658520

RESUMO

Four copper(II) complexes, 1-4 containing regioisomeric vanillin Schiff base derivatives and the nonsteroidal anti-inflammatory drug (NSAID), naproxen, were synthesised and characterised. All complexes effectively cleave DNA in cell-free systems, with 4 displaying the highest nuclease activity. DNA binding studies suggest that 4 binds to DNA via the grooves prior to inducing oxidative DNA cleavage. Three of the complexes (1, 3, and 4) indiscriminately kill cancer stem cell (CSC)-enriched cells (HMLER-shEcad) and bulk cancer cells (HMLER) at micromolar concentrations. The most effective complex, 4 also reduced the formation and size of mammospheres to a similar extent as salinomycin, a well-established CSC-potent agent. Mechanistic studies show that 4 is readily taken up by CSCs, elevates intracellular reactive oxygen species (ROS) levels, causes DNA damage, and induces caspase-dependent apoptosis. Furthermore, 4 inhibits cyclooxygenase-2 (COX-2) expression and causes COX-2-dependent CSC death. The advantage of 4 over bulk cancer cell- or CSC-selective agents is that it has the potential to remove whole tumor populations (bulk cancer cells and CSCs) with a single dose.


Assuntos
Benzaldeídos/química , Complexos de Coordenação/química , Cobre/química , Naproxeno/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Ciclo-Oxigenase 2/metabolismo , DNA/química , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff/química , Espectrofotometria
14.
Chemistry ; 23(40): 9674-9682, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28556445

RESUMO

The cytotoxic properties of a series of nickel(II)-dithiocarbamate phenanthroline complexes is reported. The complexes 1-6 kill bulk cancer cells and cancer stem cells (CSCs) with micromolar potency. Two of the complexes, 2 and 6, kill twice as many breast cancer stem cell (CSC)-enriched HMLER-shEcad cells as compared to breast CSC-depleted HMLER cells. Complex 2 inhibits mammosphere formation to a similar extent as salinomycin (a CSC-specific toxin). Detailed mechanistic studies suggest that 2 induces CSC death by necroptosis, a programmed form of necrosis. Specifically, 2 triggers MLKL phosphorylation, oligomerization, and translocation to the cell membrane. Additionally, 2 induces necrosome-mediated propidium iodide (PI) uptake and mitochondrial membrane depolarisation, as well as morphological changes consistent with necroptotosis. Strikingly, 2 does not evoke necroptosis by intracellular reactive oxygen species (ROS) production or poly(ADP) ribose polymerase (PARP-1) activation.


Assuntos
Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Complexos de Coordenação/síntese química , Células-Tronco Neoplásicas/efeitos dos fármacos , Níquel/química , Fenantrolinas/síntese química , Tiocarbamatos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Complexos de Coordenação/farmacologia , Humanos , Necrose , Células-Tronco Neoplásicas/patologia , Fenantrolinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiocarbamatos/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores
15.
Dalton Trans ; 45(44): 17867-17873, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27774561

RESUMO

We report the cancer stem cell (CSC) potency of a novel series of copper(ii)-phenanthroline complexes bearing nonsteriodial anti-inflammatory drugs: naproxen, tolfenamic acid, and indomethacin (2a-3c). Two of the complexes, 2a and 3c, kill breast CSC-enriched HMLER-shEcad cells (grown in both monolayer and three-dimensional cell cultures) to a significantly better extent than salinomycin, a well-established CSC toxin. The most potent complex in the series, 3c induces its cytotoxic effect by generating intracellular reactive oxygen species (ROS) and inhibiting cyclooxgenase-2 (COX-2) activity. Encapsulation of 3c using biodegradable methoxy poly(ethylene glycol)-b-poly(d,l-lactic-co-glycolic) acid (PEG-PLGA) copolymers at the appropriate feed (5%, 3c NP5) enhances breast CSC uptake and reduces overall toxicity. The nanoparticle formulation, 3c NP5 selectively kills breast CSCs over bulk breast cancer cells, and evokes a similar cellular response to the payload, 3c. To the best of our knowledge, this is the first study to demonstrate that polymeric nanoparticles can be used to effectively deliver CSC-potent metal complexes into CSCs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Complexos de Coordenação/administração & dosagem , Complexos de Coordenação/química , Cobre/administração & dosagem , Cobre/química , Portadores de Fármacos/química , Feminino , Humanos , Nanopartículas/química , Células-Tronco Neoplásicas/patologia , Poliésteres/química , Polietilenoglicóis/química
16.
Chembiochem ; 17(18): 1713-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27377813

RESUMO

We report the potency against cancer stem cells (CSCs) of a new cobalt(III)-cyclam complex (1) that bears the nonsteroidal anti-inflammatory drug, naproxen. The complex displays selective potency for breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Additionally, it inhibited the formation of three-dimensional tumour-like mammospheres, and reduced their viability to a greater extent than clinically used breast cancer drugs (vinorelbine, cisplatin and paclitaxel). The anti-mammosphere potency of 1 was enhanced under hypoxia-mimicking conditions. Detailed mechanistic studies revealed that DNA damage and cyclooxygenase-2 (COX-2) inhibition contribute to the cytotoxic mechanism of 1. To the best of our knowledge, 1 is the first cobalt-containing compound to show selective potency for CSCs over bulk cancer cells.


Assuntos
Antineoplásicos/farmacologia , Cobalto/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Naproxeno/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Compostos Organometálicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobalto/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Naproxeno/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Relação Estrutura-Atividade
17.
Dalton Trans ; 45(25): 10289-96, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27241864

RESUMO

The reaction of ligand , N,N-bis(pyridin-2-ylmethyl)acetamide, with five transition metal salts, FeCl3·6H2O, CuCl2·2H2O, Cu(ClO4)2·6H2O, ZnCl2 and K2PtCl4/KI, produced five metal complexes, [(µ-O)(FeClL')(FeCl3)] (), [CuLCl2] (), [CuBPA(ClO4)(CHCN)] ClO4 (), [ZnLCl2] () and [PtLI2] (), where = 1-(2,4,5-tri(pyridin-2-yl)-3-(pyridin-2-ylmethyl)imidazolidin-1-yl)ethanone which formed in situ, and BPA = bis(pyridin-2-ylmethyl)amine. The ligand and complexes were characterized by a variety of spectroscopic techniques including X-ray single crystal diffraction where applicable. Depending on the metal ion and auxiliary ligand of the complex, the acetyl group of the ligand could be either intact or cleaved. When ferric chloride hexahydrate was used, the deacetylation proceeded even further and a novel heterocyclic compound () was formed in situ. A possible mechanism was proposed for the formation of the heterocyclic compound found in complex . Our results indicate that to cleave effectively an amide bond, it is essential for a metal centre to bind to the amide bond and the metal centre is of sufficient Lewis acidity.

18.
Beilstein J Org Chem ; 12: 863-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340477

RESUMO

A series of copper complexes (3-6) stabilized by 1,2,3-triazole-tethered N-heterocyclic carbene ligands have been prepared via simple reaction of imidazolium salts with copper powder in good yields. The structures of bi- and trinuclear copper complexes were fully characterized by NMR, elemental analysis (EA), and X-ray crystallography. In particular, [Cu2(L2)2](PF6)2 (3) and [Cu2(L3)2](PF6)2 (4) were dinuclear copper complexes. Complexes [Cu3(L4)2](PF6)3 (5) and [Cu3(L5)2](PF6)3 (6) consist of a triangular Cu3 core. These structures vary depending on the imidazolium backbone and N substituents. The copper-NHC complexes tested are highly active for the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction in an air atmosphere at room temperature in a CH3CN solution. Complex 4 is the most efficient catalyst among these polynuclear complexes in an air atmosphere at room temperature.

19.
Beilstein J Org Chem ; 11: 1786-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664598

RESUMO

Ruthenium complexes [Ru(L1)2(CH3CN)2](PF6)2 (1), [RuL1(CH3CN)4](PF6)2 (2) and [RuL2(CH3CN)3](PF6)2 (3) (L1= 3-methyl-1-(pyrimidine-2-yl)imidazolylidene, L2 = 1,3-bis(pyridin-2-ylmethyl)benzimidazolylidene) were obtained through a transmetallation reaction of the corresponding nickel-NHC complexes with [Ru(p-cymene)2Cl2]2 in refluxing acetonitrile solution. The crystal structures of three complexes determined by X-ray analyses show that the central Ru(II) atoms are coordinated by pyrimidine- or pyridine-functionalized N-heterocyclic carbene and acetonitrile ligands displaying the typical octahedral geometry. The reaction of [RuL1(CH3CN)4](PF6)2 with triphenylphosphine and 1,10-phenanthroline resulted in the substitution of one and two coordinated acetonitrile ligands and afforded [RuL1(PPh3)(CH3CN)3](PF6)2 (4) and [RuL1(phen)(CH3CN)2](PF6)2 (5), respectively. The molecular structures of the complexes 4 and 5 were also studied by X-ray diffraction analysis. These ruthenium complexes have proven to be efficient catalysts for transfer hydrogenation of various ketones.

20.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 6): m785, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22719336

RESUMO

In the title complex, [CuBr(2)(C(14)H(11)BrN(4)O)(2)], the Cu(II) ion is located on an inversion centre and is coordinated by two ketonic O atoms, two N atoms and two Br atoms, forming a distorted octahedral coordination environment. The two carbonyl groups are trans positioned with C=O bond lengths of 1.256 (5) Å, in agreement with a classical carbonyl bond. The Cu-O bond length is 2.011 (3) Å. The two bromo-benzyl rings are approximately parallel to one another, forming a dihedral angle of 70.1 (4)° with the coordination plane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA