Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Hum Genet ; 143(1): 71-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117302

RESUMO

Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.


Assuntos
Anormalidades Múltiplas , Face/anormalidades , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Adulto , Humanos , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Micrognatismo/genética , Micrognatismo/diagnóstico , Deformidades Congênitas da Mão/genética , Pescoço/anormalidades , Fenótipo , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética
2.
Genes (Basel) ; 14(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980996

RESUMO

Multiple synostoses syndrome (OMIM: #186500, #610017, #612961, #617898) is a genetically heterogeneous group of autosomal dominant diseases characterized by abnormal bone unions. The joint fusions frequently involve the hands, feet, elbows or vertebrae. Pathogenic variants in FGF9 have been associated with multiple synostoses syndrome type 3 (SYNS3). So far, only five different missense variants in FGF9 that cause SYNS3 have been reported in 18 affected individuals. Unlike other multiple synostoses syndromes, conductive hearing loss has not been reported in SYNS3. In this report, we describe the clinical and selected radiological findings in a large multigenerational family with a novel missense variant in FGF9: c.430T>C, p.(Trp144Arg). We extend the phenotypic spectrum of SYNS3 by suggesting that cleft palate and conductive hearing loss are part of the syndrome and highlight the high degree of intrafamilial phenotypic variability. These findings should be considered when counseling affected individuals.


Assuntos
Perda Auditiva Condutiva , Sinostose , Humanos , Família Estendida , Fator 9 de Crescimento de Fibroblastos , Perda Auditiva Condutiva/genética , Mutação de Sentido Incorreto , Síndrome
3.
Clin Genet ; 103(4): 484-491, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36576126

RESUMO

Protein translation is an essential cellular process and dysfunctional protein translation causes various neurodevelopmental disorders. The eukaryotic translation elongation factor 1A (eEF1A) delivers aminoacyl-tRNA to the ribosome, while the eEF1B complex acts as a guanine exchange factor (GEF) of GTP for GDP indirectly catalyzing the release of eEF1A from the ribosome. The gene EEF1D encodes the eEF1Bδ subunit of the eEF1B complex. EEF1D is alternatively spliced giving rise to one long and three short isoforms. Two different homozygous, truncating variants in EEF1D had been associated with severe intellectual disability and microcephaly in two families. The published variants only affect the long isoform of EEF1D that acts as a transcription factor of heat shock element proteins. By exome sequencing, we identified two different homozygous variants in EEF1D in two families with severe developmental delay, severe microcephaly, spasticity, and failure to thrive with optic atrophy, poor feeding, and recurrent aspiration pneumonia. The EEF1D variants reported in this study are localized in the C-terminal GEF domain, suggesting that a disturbed protein translation machinery might contribute to the neurodevelopmental phenotype. Pathogenic variants localized in both the alternatively spliced domain or the GEF domain of EEF1D cause a severe neurodevelopmental disorder with microcephaly and spasticity.


Assuntos
Microcefalia , Transtornos do Neurodesenvolvimento , Humanos , Guanina , Fatores de Troca do Nucleotídeo Guanina/genética , Transtornos do Neurodesenvolvimento/genética , Isoformas de Proteínas/genética , Fator 1 de Elongação de Peptídeos
4.
Eur J Hum Genet ; 30(1): 126-132, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785884

RESUMO

Here we report for the first time on the maternal transmission of mild Coffin-Siris syndrome (CSS) caused by a SOX11 missense variant. We present two sisters with intellectual disability and muscular hypotonia born to non-consanguineous parents. Cogan ocular motor apraxia was present in both sisters. Body measurements were in a normal range. The mother and both daughters showed hypoplastic nails of the fifth toes. A missense variant in SOX11 [c.139 G > A; p.(Gly47Ser)] in both sisters and their mother was identified. Since 2014, variants in SOX11 are known to cause mild CSS. Most described patients showed intellectual disability, especially concerning acquired language. All of them had hypoplastic nails of the fifth toes. It is of note, that some of these patients show Cogan ocular motor apraxia. The facial dysmorphic features seem not to be specific. We suggest that the combination of Cogan ocular motor apraxia, hypoplastic nails of fifth toes, and developmental delay give the important diagnostic clue for a variant in the SOX11 gene (OMIM 615866, MR 27).


Assuntos
Anormalidades Múltiplas/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição SOXC/genética , Anormalidades Múltiplas/patologia , Adulto , Criança , Face/patologia , Feminino , Deformidades Congênitas da Mão/patologia , Humanos , Deficiência Intelectual/patologia , Micrognatismo/patologia , Mutação de Sentido Incorreto , Pescoço/patologia , Linhagem , Fenótipo
6.
J Mol Med (Berl) ; 99(12): 1755-1768, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536092

RESUMO

Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) cause a diverse spectrum of autosomal recessive disorders. Tyrosyl tRNA synthetase (TyrRS) is encoded by YARS1 (cytosolic, OMIM*603,623) and is responsible of coupling tyrosine to its specific tRNA. Next to the enzymatic domain, TyrRS has two additional functional domains (N-Terminal TyrRSMini and C-terminal EMAP-II-like domain) which confer cytokine-like functions. Mutations in YARS1 have been associated with autosomal-dominant Charcot-Marie-Tooth (CMT) neuropathy type C and a heterogenous group of autosomal recessive, multisystem diseases. We identified 12 individuals from 6 families with the recurrent homozygous missense variant c.1099C > T;p.(Arg367Trp) (NM_003680.3) in YARS1. This variant causes a multisystem disorder with developmental delay, microcephaly, failure to thrive, short stature, muscular hypotonia, ataxia, brain anomalies, microcytic anemia, hepatomegaly, and hypothyroidism. In silico analyses show that the p.(Arg367Trp) does not affect the catalytic domain responsible of enzymatic coupling, but destabilizes the cytokine-like C-terminal domain. The phenotype associated with p.(Arg367Trp) is distinct from the other biallelic pathogenic variants that reside in different functional domains of TyrRS which all show some common, but also divergent clinical signs [(e.g., p.(Phe269Ser)-retinal anomalies, p.(Pro213Leu)/p.(Gly525Arg)-mild ID, p.(Pro167Thr)-high fatality)]. The diverse clinical spectrum of ARS1-associated disorders is related to mutations affecting the various non-canonical domains of ARS1, and impaired protein translation is likely not the exclusive disease-causing mechanism of YARS1- and ARS1-associated neurodevelopmental disorders. KEY MESSAGES: The missense variant p.(Arg367Trp) in YARS1 causes a distinct multisystem disorder. p.(Arg367Trp) affects a non-canonical domain with cytokine-like functions. Phenotypic heterogeneity associates with the different affected YARS1 domains. Impaired protein translation is likely not the exclusive mechanism of ARS1-associated disorders.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Tirosina-tRNA Ligase/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Fenótipo , Conformação Proteica , Tirosina-tRNA Ligase/química , Sequenciamento do Exoma
7.
J Clin Med ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932965

RESUMO

BACKGROUND: Macrophage Migration Inhibitory Factor (MIF) is highly elevated after cardiac surgery and impacts the postoperative inflammation. The aim of this study was to analyze whether the polymorphisms CATT5-7 (rs5844572/rs3063368,"-794") and G>C single-nucleotide polymorphism (rs755622,-173) in the MIF gene promoter are related to postoperative outcome. METHODS: In 1116 patients undergoing cardiac surgery, the MIF gene polymorphisms were analyzed and serum MIF was measured by ELISA in 100 patients. RESULTS: Patients with at least one extended repeat allele (CATT7) had a significantly higher risk of acute kidney injury (AKI) compared to others (23% vs. 13%; OR 2.01 (1.40-2.88), p = 0.0001). Carriers of CATT7 were also at higher risk of death (1.8% vs. 0.4%; OR 5.12 (0.99-33.14), p = 0.026). The GC genotype was associated with AKI (20% vs. GG/CC:13%, OR 1.71 (1.20-2.43), p = 0.003). Multivariate analyses identified CATT7 predictive for AKI (OR 2.13 (1.46-3.09), p < 0.001) and death (OR 5.58 (1.29-24.04), p = 0.021). CATT7 was associated with higher serum MIF before surgery (79.2 vs. 50.4 ng/mL, p = 0.008). CONCLUSION: The CATT7 allele associates with a higher risk of AKI and death after cardiac surgery, which might be related to chronically elevated serum MIF. Polymorphisms in the MIF gene may constitute a predisposition for postoperative complications and the assessment may improve risk stratification and therapeutic guidance.

8.
Am J Hum Genet ; 106(6): 830-845, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442410

RESUMO

SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Craniossinostoses/genética , Transtornos do Neurodesenvolvimento/genética , Osteocondroma/genética , Fatores de Transcrição SOXD/genética , Transporte Ativo do Núcleo Celular , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Criança , Pré-Escolar , Simulação por Computador , Feminino , Variação Estrutural do Genoma/genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico , RNA-Seq , Fatores de Transcrição SOXD/química , Fatores de Transcrição SOXD/metabolismo , Síndrome , Transcrição Gênica , Transcriptoma , Translocação Genética/genética
9.
Genet Med ; 22(3): 547-556, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31649276

RESUMO

PURPOSE: Treacher Collins syndrome (TCS) is a rare autosomal dominant mandibulofacial dysostosis, with a prevalence of 0.2-1/10,000. Features include bilateral and symmetrical malar and mandibular hypoplasia and facial abnormalities due to abnormal neural crest cell (NCC) migration and differentiation. To date, three genes have been identified: TCOF1, POLR1C, and POLR1D. Despite a large number of patients with a molecular diagnosis, some remain without a known genetic anomaly. METHODS: We performed exome sequencing for four individuals with TCS but who were negative for pathogenic variants in the known causative genes. The effect of the pathogenic variants was investigated in zebrafish. RESULTS: We identified three novel pathogenic variants in POLR1B. Knockdown of polr1b in zebrafish induced an abnormal craniofacial phenotype mimicking TCS that was associated with altered ribosomal gene expression, massive p53-associated cellular apoptosis in the neuroepithelium, and reduced number of NCC derivatives. CONCLUSION: Pathogenic variants in the RNA polymerase I subunit POLR1B might induce massive p53-dependent apoptosis in a restricted neuroepithelium area, altering NCC migration and causing cranioskeletal malformations. We identify POLR1B as a new causative gene responsible for a novel TCS syndrome (TCS4) and establish a novel experimental model in zebrafish to study POLR1B-related TCS.


Assuntos
Anormalidades Craniofaciais/genética , RNA Polimerases Dirigidas por DNA/genética , Disostose Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Movimento Celular/genética , Anormalidades Craniofaciais/patologia , Predisposição Genética para Doença , Humanos , Disostose Mandibulofacial/patologia , Mutação , Crista Neural/anormalidades , Crista Neural/patologia , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma , Peixe-Zebra/genética
10.
Clin Genet ; 96(3): 246-253, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31090057

RESUMO

Two distinct genomic disorders have been linked to Xq28-gains, namely Xq28-duplications including MECP2 and Int22h1/Int22h2-mediated duplications involving RAB39B. Here, we describe six unrelated patients, five males and one female, with Xq28-gains distal to MECP2 and proximal to the Int22h1/Int22h2 low copy repeats. Comparison with patients carrying overlapping duplications in the literature defined the MidXq28-duplication syndrome featuring intellectual disability, language impairment, structural brain malformations, microcephaly, seizures and minor craniofacial features. The duplications overlapped for 108 kb including FLNA, RPL10 and GDI1 genes, highly expressed in brain and candidates for the neurologic phenotype.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos X , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas rab de Ligação ao GTP/genética , Adolescente , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Linhagem , Fenótipo , Adulto Jovem
11.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30612738

RESUMO

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Assuntos
Proteínas de Transporte/genética , Proteínas Nucleares/genética , Proteínas de Transporte/metabolismo , Cromatina/metabolismo , DNA , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Feminino , Instabilidade Genômica , Mutação em Linhagem Germinativa , Recombinação Homóloga , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Reparo de DNA por Recombinação
12.
Hum Genet ; 137(9): 753-768, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30167850

RESUMO

NALCN is a conserved cation channel, which conducts a permanent sodium leak current and regulates resting membrane potential and neuronal excitability. It is part of a large ion channel complex, the "NALCN channelosome", consisting of multiple proteins including UNC80 and UNC79. The predominant neuronal expression pattern and its function suggest an important role in neuronal function and disease. So far, biallelic NALCN and UNC80 variants have been described in a small number of individuals leading to infantile hypotonia, psychomotor retardation, and characteristic facies 1 (IHPRF1, OMIM 615419) and 2 (IHPRF2, OMIM 616801), respectively. Heterozygous de novo NALCN missense variants in the S5/S6 pore-forming segments lead to congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD, OMIM 616266) with some clinical overlap. In this study, we present detailed clinical information of 16 novel individuals with biallelic NALCN variants, 1 individual with a heterozygous de novo NALCN missense variant and an interesting clinical phenotype without contractures, and 12 individuals with biallelic UNC80 variants. We report for the first time a missense NALCN variant located in the predicted S6 pore-forming unit inherited in an autosomal-recessive manner leading to mild IHPRF1. We show evidence of clinical variability, especially among IHPRF1-affected individuals, and discuss differences between the IHPRF1- and IHPRF2 phenotypes. In summary, we provide a comprehensive overview of IHPRF1 and IHPRF2 phenotypes based on the largest cohort of individuals reported so far and provide additional insights into the clinical phenotypes of these neurodevelopmental diseases to help improve counseling of affected families.


Assuntos
Proteínas de Transporte/genética , Canalopatias/genética , Deficiências do Desenvolvimento/genética , Marcadores Genéticos , Variação Genética , Proteínas de Membrana/genética , Canais de Sódio/genética , Adolescente , Adulto , Canalopatias/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Canais Iônicos , Masculino , Fenótipo , Adulto Jovem
13.
Brain ; 141(8): 2299-2311, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985992

RESUMO

The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/genética , Mutação em Linhagem Germinativa , Haploinsuficiência , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Linfócitos/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Mutação , Proteínas Repressoras/metabolismo , Linfócitos T/fisiologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Hum Mutat ; 39(8): 1126-1138, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29851191

RESUMO

Highly conserved TREX-mediated mRNA export is emerging as a key pathway in neuronal development and differentiation. TREX subunit variants cause neurodevelopmental disorders (NDDs) by interfering with mRNA export from the cell nucleus to the cytoplasm. Previously we implicated four missense variants in the X-linked THOC2 gene in intellectual disability (ID). We now report an additional six affected individuals from five unrelated families with two de novo and three maternally inherited pathogenic or likely pathogenic variants in THOC2 extending the genotypic and phenotypic spectrum. These comprise three rare missense THOC2 variants that affect evolutionarily conserved amino acid residues and reduce protein stability and two with canonical splice-site THOC2 variants that result in C-terminally truncated THOC2 proteins. We present detailed clinical assessment and functional studies on a de novo variant in a female with an epileptic encephalopathy and discuss an additional four families with rare variants in THOC2 with supportive evidence for pathogenicity. Severe neurocognitive features, including movement and seizure disorders, were observed in this cohort. Taken together our data show that even subtle alterations to the canonical molecular pathways such as mRNA export, otherwise essential for cellular life, can be compatible with life, but lead to NDDs in humans.


Assuntos
Epilepsia/metabolismo , Éxons/genética , Transtornos do Crescimento/metabolismo , Deficiência Intelectual/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Criança , Pré-Escolar , Epilepsia/genética , Feminino , Transtornos do Crescimento/genética , Células HEK293 , Células HeLa , Humanos , Deficiência Intelectual/genética , Masculino , Mutação de Sentido Incorreto/genética , Isoformas de Proteínas/genética , Transporte de RNA/genética , Transporte de RNA/fisiologia , Proteínas de Ligação a RNA/genética
15.
Am J Hum Genet ; 102(6): 1195-1203, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861108

RESUMO

Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.


Assuntos
Estudos de Associação Genética , Padrões de Herança/genética , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Quinases/genética , Adolescente , Adulto , Sequência de Bases , Linhagem Celular , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Lactente , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Translocação Genética , Adulto Jovem
16.
Am J Hum Genet ; 102(3): 468-479, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29429572

RESUMO

Variants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Mutação/genética , Pescoço/anormalidades , Subunidades Proteicas/genética , Adolescente , Sequência de Aminoácidos , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Proteínas de Ligação a DNA/química , Fácies , Feminino , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Fenótipo , Fatores de Transcrição
17.
Eur J Hum Genet ; 25(8): 935-945, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28635951

RESUMO

The chromosomal region 14q32 contains several imprinted genes, which are expressed either from the paternal (DLK1 and RTL1) or the maternal (MEG3, RTL1as and MEG8) allele only. Imprinted expression of these genes is regulated by two differentially methylated regions (DMRs), the germline DLK1/MEG3 intergenic (IG)-DMR (MEG3/DLK1:IG-DMR) and the somatic MEG3-DMR (MEG3:TSS-DMR), which are methylated on the paternal and unmethylated on the maternal allele. Disruption of imprinting in the 14q32 region results in two clinically distinct imprinting disorders, Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). Another DMR with a yet unknown function is located in intron 2 of MEG8 (MEG8-DMR, MEG8:Int2-DMR). In contrast to the IG-DMR and the MEG3-DMR, this somatic DMR is methylated on the maternal chromosome and unmethylated on the paternal chromosome. We have performed extensive methylation analyses by deep bisulfite sequencing of the IG-DMR, MEG3-DMR and MEG8-DMR in different prenatal tissues including amniotic fluid cells and chorionic villi. In addition, we have studied the methylation pattern of the MEG8-DMR in different postnatal tissues. We show that the MEG8-DMR is hypermethylated in each of 13 non-deletion TS14 patients (seven newly identified and six previously published patients), irrespective of the underlying molecular cause, and is always hypomethylated in the four patients with KOS14, who have different deletions not encompassing the MEG8-DMR itself. The size and the extent of the deletions and the resulting methylation pattern suggest that transcription starting from the MEG3 promoter may be necessary to establish the methylation imprint at the MEG8-DMR.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 14/genética , Metilação de DNA , Impressão Genômica , RNA Nucleolar Pequeno/genética , Adulto , Idoso , Transtornos Cromossômicos/diagnóstico , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/metabolismo
18.
Hum Genet ; 136(7): 821-834, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28393272

RESUMO

Pathogenic variants in genes encoding subunits of the spliceosome are the cause of several human diseases, such as neurodegenerative diseases. The RNA splicing process is facilitated by the spliceosome, a large RNA-protein complex consisting of small nuclear ribonucleoproteins (snRNPs), and many other proteins, such as heterogeneous nuclear ribonucleoproteins (hnRNPs). The HNRNPU gene (OMIM *602869) encodes the heterogeneous nuclear ribonucleoprotein U, which plays a crucial role in mammalian development. HNRNPU is expressed in the fetal brain and adult heart, kidney, liver, brain, and cerebellum. Microdeletions in the 1q44 region encompassing HNRNPU have been described in patients with intellectual disability (ID) and other clinical features, such as seizures, corpus callosum abnormalities (CCA), and microcephaly. Recently, pathogenic HNRNPU variants were identified in large ID and epileptic encephalopathy cohorts. In this study, we provide detailed clinical information of five novels and review two of the previously published individuals with (likely) pathogenic de novo variants in the HNRNPU gene including three non-sense and two missense variants, one small intragenic deletion, and one duplication. The phenotype in individuals with variants in HNRNPU is characterized by early onset seizures (6/7), severe ID (6/6), severe speech impairment (6/6), hypotonia (6/7), and central nervous system (CNS) (5/6), cardiac (4/6), and renal abnormalities (3/4). In this study, we broaden the clinical and mutational HNRNPU-associated spectrum, and demonstrate that heterozygous HNRNPU variants cause epilepsy, severe ID with striking speech impairment and variable CNS, cardiac, and renal anomalies.


Assuntos
Epilepsia/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Heterozigoto , Deficiência Intelectual/genética , Idade de Início , Agenesia do Corpo Caloso/genética , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/patologia , Deleção Cromossômica , Cromossomos Humanos Par 1 , Epilepsia/diagnóstico , Feminino , Variação Genética , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Rim/anormalidades , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Fenótipo , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/genética , Convulsões/diagnóstico , Convulsões/genética
19.
Eur J Hum Genet ; 25(7): 889-893, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28422131

RESUMO

For a large number of individuals with intellectual disability (ID), the molecular basis of the disorder is still unknown. However, whole-exome sequencing (WES) is providing more and more insights into the genetic landscape of ID. In the present study, we performed trio-based WES in 311 patients with unsolved ID and additional clinical features, and identified homozygous CPLX1 variants in three patients with ID from two unrelated families. All displayed marked developmental delay and migrating myoclonic epilepsy, and one showed a cerebellar cleft in addition. The encoded protein, complexin 1, is crucially involved in neuronal synaptic regulation, and homozygous Cplx1 knockout mice have the earliest known onset of ataxia seen in a mouse model. Recently, a homozygous truncating variant in CPLX1 was suggested to be causative for migrating epilepsy and structural brain abnormalities. ID was not reported although it cannot be completely ruled out. However, the currently limited knowledge on CPLX1 suggests that loss of complexin 1 function may lead to a complex but variable clinical phenotype, and our findings encourage further investigations of CPLX1 in patients with ID, developmental delay and myoclonic epilepsy to unravel the phenotypic spectrum of carriers of CPLX1 variants.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Epilepsias Mioclônicas/genética , Deficiência Intelectual/genética , Mutação , Proteínas do Tecido Nervoso/genética , Criança , Pré-Escolar , Epilepsias Mioclônicas/diagnóstico , Feminino , Genes Recessivos , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Fenótipo , Síndrome
20.
Am J Med Genet A ; 173(2): 435-443, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862890

RESUMO

Loss-of-function mutations and deletions of the SOX2 gene are known to cause uni- and bilateral anophthalmia and microphthalmia as well as related disorders such as anophthalmia-esophageal-genital syndrome. Thus, anophthalmia/microphthalmia is the primary indication for targeted, "phenotype first" analyses of SOX2. However, SOX2 mutations are also associated with a wide range of non-ocular abnormalities, such as postnatal growth retardation, structural brain anomalies, hypogenitalism, and developmental delay. The present report describes three patients without anophthalmia/microphthalmia and loss-of-function mutations or microdeletions of SOX2 who had been investigated in a "genotype first" manner due to intellectual disability/developmental delay using whole exome sequencing or chromosomal microarray analyses. This result prompted us to perform SOX2 Sanger sequencing in 192 developmental delay/intellectual disability patients without anophthalmia or microphthalmia. No additional SOX2 loss-of-function mutations were detected in this cohort, showing that SOX2 is clearly not a major cause of intellectual disability without anophthalmia/microphthalmia. In our three patients and four further, reported "genotype first" SOX2 microdeletion patients, anophthalmia/microphthalmia was present in less than half of the patients. Thus, SOX2 is another example of a gene whose clinical spectrum is broadened by the generation of "genotype first" findings using hypothesis-free, genome-wide methods. © 2016 Wiley Periodicals, Inc.


Assuntos
Estudos de Associação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Fenótipo , Mutação Puntual , Fatores de Transcrição SOXB1/genética , Deleção de Sequência , Encéfalo/anormalidades , Pré-Escolar , Hibridização Genômica Comparativa , Exoma , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Fácies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Polimorfismo de Nucleotídeo Único , Sistema de Registros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA