Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ultrasound Med Biol ; 47(7): 1826-1843, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33820668

RESUMO

A combination of ultrahigh-speed optical imaging (5 × 106 frames/s), B-mode ultrasound and passive cavitation detection was used to study the vaporization process and determine both the acoustic droplet vaporization (ADV) and inertial cavitation (IC) thresholds of phospholipid-coated perfluorobutane nanodroplets (PFB NDs, diameter = 237 ± 16 nm). PFB NDs have not previously been studied with ultrahigh-speed imaging and were observed to form individual microbubbles (1-10 µm) within two to three cycles and subsequently larger bubble clusters (10-50 µm). The ADV and IC thresholds did not statistically significantly differ and decreased with increasing pulse length (20-20,000 cycles), pulse repetition frequency (1-100 Hz), concentration (108-1010 NDs/mL), temperature (20°C-45°C) and decreasing frequency (1.5-0.5 MHz). Overall, the results indicate that at frequencies of 0.5, 1.0 and 1.5 MHz, PFB NDs can be vaporized at moderate peak negative pressures (<2.0 MPa), pulse lengths and pulse repetition frequencies. This finding is encouraging for the use of PFB NDs as cavitation agents, as these conditions are comparable to those required to achieve therapeutic effects with microbubbles, unlike those reported for higher-boiling-point NDs. The differences between the optically and acoustically determined ADV thresholds, however, suggest that application-specific thresholds should be defined according to the biological/therapeutic effect of interest.


Assuntos
Acústica , Fluorocarbonos , Nanopartículas , Imagem Óptica , Fosfolipídeos , Volatilização , Imagem Óptica/métodos
2.
Nanomedicine (Lond) ; 16(1): 37-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33426913

RESUMO

Aims: Testing ultrasound-mediated cavitation for enhanced delivery of the therapeutic antibody cetuximab to tumors in a mouse model. Methods: Tumors with strong EGF receptor expression were grown bilaterally. Cetuximab was coadministered intravenously with cavitation nuclei, consisting of either the ultrasound contrast agent Sonovue or gas-stabilizing nanoscale SonoTran Particles. One of the two tumors was exposed to focused ultrasound. Passive acoustic mapping localized and monitored cavitation activity. Both tumors were then excised and cetuximab concentration was quantified. Results: Cavitation increased tumoral cetuximab concentration. When nucleated by Sonovue, a 2.1-fold increase (95% CI 1.3- to 3.4-fold) was measured, whereas SonoTran Particles gave a 3.6-fold increase (95% CI 2.3- to 5.8-fold). Conclusions: Ultrasound-mediated cavitation, especially when nucleated by nanoscale gas-entrapping particles, can noninvasively increase site-specific delivery of therapeutic antibodies to solid tumors.


Assuntos
Nanopartículas , Neoplasias , Animais , Meios de Contraste , Xenoenxertos , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Ultrassonografia
3.
Ultrasound Med Biol ; 47(4): 982-997, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33451816

RESUMO

Lyso-thermosensitive liposomes (LTSLs) are specifically designed to release chemotherapy agents under conditions of mild hyperthermia. Preclinical studies have indicated that magnetic resonance (MR)-guided focused ultrasound (FUS) systems can generate well-controlled volumetric hyperthermia using real-time thermometry. However, high-throughput clinical translation of these approaches for drug delivery is challenging, not least because of the significant cost overhead of MR guidance and the much larger volumes that need to be heated clinically. Using an ultrasound-guided extracorporeal clinical FUS device (Chongqing HAIFU, JC200) with thermistors in a non-perfused ex vivo bovine liver tissue model with ribs, we present an optimised strategy for rapidly inducing (5-15 min) and sustaining (>30 min) mild hyperthermia (ΔT <+4°C) in large tissue volumes (≤92 cm3). We describe successful clinical translation in a first-in-human clinical trial of targeted drug delivery of LTSLs (TARDOX: a phase I study to investigate drug release from thermosensitive liposomes in liver tumours), in which targeted tumour hyperthermia resulted in localised chemo-ablation. The heating strategy is potentially applicable to other indications and ultrasound-guided FUS devices.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Colorretais/patologia , Sistemas de Liberação de Medicamentos , Hipertermia Induzida/instrumentação , Neoplasias Hepáticas/tratamento farmacológico , Ultrassonografia/instrumentação , Adenocarcinoma/secundário , Animais , Bovinos , Análise Custo-Benefício , Sistemas de Liberação de Medicamentos/efeitos adversos , Humanos , Hipertermia Induzida/efeitos adversos , Hipertermia Induzida/métodos , Lipossomos , Fígado , Neoplasias Hepáticas/secundário , Costelas , Temperatura , Ultrassonografia de Intervenção
4.
Ultrason Sonochem ; 60: 104782, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31539725

RESUMO

Ultrasound-induced cavitation has been used as a tool of enhancing extravasation and tissue penetration of anticancer agents in tumours. Initiating cavitation in tissue however, requires high acoustic intensities that are neither safe nor easy to achieve with current clinical systems. The use of cavitation nuclei can however lower the acoustic intensities required to initiate cavitation and the resulting bio-effects in situ. Microbubbles, solid gas-trapping nanoparticles, and phase shift nanodroplets are some examples in a growing list of proposed cavitation nuclei. Besides the ability to lower the cavitation threshold, stability, long circulation times, biocompatibility and biodegradability, are some of the desirable characteristics that a clinically applicable cavitation agent should possess. In this study, we present a novel formulation of ultrasound-triggered phase transition sub-micrometer sized nanodroplets (~400 nm) stabilised with a biocompatible polymer, polydopamine (PDA). PDA offers some important benefits: (1) facile fabrication, as dopamine monomers are directly polymerised on the nanodroplets, (2) high polymer biocompatibility, and (3) ease of functionalisation with other molecules such as drugs or targeting species. We demonstrate that the acoustic intensities required to initiate inertial cavitation can all be achieved with existing clinical ultrasound systems. Cell viability and haemolysis studies show that nanodroplets are biocompatible. Our results demonstrate the great potential of PDA nanodroplets as an acoustically active nanodevice, which is highly valuable for biomedical applications including drug delivery and treatment monitoring.

5.
Langmuir ; 35(40): 13205-13215, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31517490

RESUMO

Sonoporation, the permeabilization of cell membranes following exposure to microbubbles and ultrasound, has considerable potential for therapeutic delivery. To date, engineering of microbubbles for these applications has focused primarily upon optimizing microbubble size and stability, or attachment of targeting species and/or drug molecules. In this work, it is demonstrated that the microbubble coating can also be tailored to directly influence cell permeabilization. Specifically, lipid exchange mechanisms between phospholipid microbubbles and cells can be exploited to significantly increase sonoporation efficiency in vitro. A theoretical analysis of the energy required for pore formation was carried out. From this, it was hypothesized that sonoporation could be promoted by the transfer of lipid molecules with appropriate carbon chain length and/or shape (cylindrical or conical). Spectral imaging with a hydration-sensitive membrane probe (C-Laurdan) was used to measure changes in the membrane lipid order of A-549 cancer cells following exposure to suspensions of different phospholipids. Two candidate lipids were identified, a short-chain-length phospholipid (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) and a medium-chain-length lysolipid (1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (16:0 lyso-PC)). Microbubbles were prepared with matched concentrations, size distributions, and acoustic responses. Confocal microscopy was used to measure cell uptake of a model drug (propidium iodide) with and without ultrasound exposure (1 MHz, 250 kPa peak negative pressure, 1 kHz pulse repetition frequency, 10% duty cycle, 15 s exposure). Despite significantly decreasing the cell membrane lipid order, DLPC did not increase sonoporation. Microbubbles containing 16:0 lyso-PC, however, produced a ∼5-fold increase in sonoporation compared to control microbubbles. Importantly, the lyso-PC molecules were incorporated into the microbubble coating and did not affect cell permeability prior to ultrasound exposure. These findings indicate that microbubbles can be engineered to exploit lipid exchange between microbubble shells and cell membranes to enhance drug delivery, a new optimization route that may lead to enhanced therapeutic efficacy of ultrasound-mediated treatments.


Assuntos
Membrana Celular/metabolismo , Portadores de Fármacos/química , Microbolhas , Fosfatidilcolinas/química , Células A549 , Humanos , Estrutura Molecular , Ondas Ultrassônicas
6.
Theranostics ; 9(19): 5595-5609, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534505

RESUMO

Nanomedicines allow active targeting of cancer for diagnostic and therapeutic applications through incorporation of multiple functional components. Frequently, however, clinical translation is hindered by poor intratumoural delivery and distribution. The application of physical stimuli to promote tumour uptake is a viable route to overcome this limitation. In this study, ultrasound-mediated cavitation of microbubbles was investigated as a mean of enhancing the delivery of a liposome designed for chemo-radionuclide therapy targeted to EGFR overexpressing cancer. Method: Liposomes (111In-EGF-LP-Dox) were prepared by encapsulation of doxorubicin (Dox) and surface functionalisation with Indium-111 tagged epidermal growth factor. Human breast cancer cell lines with high and low EGFR expression (MDA-MB-468 and MCF7 respectively) were used to study selectivity of liposomal uptake, subcellular localisation of drug payload, cytotoxicity and DNA damage. Liposome extravasation following ultrasound-induced cavitation of microbubbles (SonoVue®) was studied using a tissue-mimicking phantom. In vivo stability, pharmacokinetic profile and biodistribution were evaluated following intravenous administration of 111In-labelled, EGF-functionalised liposomes to mice bearing subcutaneous MDA-MB-468 xenografts. Finally, the influence of ultrasound-mediated cavitation on the delivery of liposomes into tumours was studied. Results: Liposomes were loaded efficiently with Dox, surface decorated with 111In-EGF and showed selective uptake in MDA-MB-468 cells compared to MCF7. Following binding to EGFR, Dox was released into the intracellular space and 111In-EGF shuttled to the cell nucleus. DNA damage and cell kill were higher in MDA-MB-468 than MCF7 cells. Moreover, Dox and 111In were shown to have an additive cytotoxic effect in MDA-MB-468 cells. US-mediated cavitation increased the extravasation of liposomes in an in vitro gel phantom model. In vivo, the application of ultrasound with microbubbles increased tumour uptake by 66% (p<0.05) despite poor vascularisation of MDA-MB-468 xenografts (as shown by DCE-MRI). Conclusion:111In-EGF-LP-Dox designed for concurrent chemo-radionuclide therapy showed specificity for and cytotoxicity towards EGFR-overexpressing cancer cells. Delivery to tumours was enhanced by the use of ultrasound-mediated cavitation indicating that this approach has the potential to deliver cytotoxic levels of therapeutic radionuclide to solid tumours.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Radioisótopos de Índio/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina/química , Doxorrubicina/farmacocinética , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Receptores ErbB/genética , Feminino , Humanos , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Lipossomos/química , Camundongos , Camundongos Nus , Distribuição Tecidual , Ultrassom
7.
Radiology ; 291(1): 232-238, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30644817

RESUMO

Purpose To demonstrate the feasibility and safety of using focused ultrasound planning models to determine the treatment parameters needed to deliver volumetric mild hyperthermia for targeted drug delivery without real-time thermometry. Materials and Methods This study was part of the Targeted Doxorubicin, or TARDOX, phase I prospective trial of focused ultrasound-mediated, hyperthermia-triggered drug delivery to solid liver tumors ( ClinicalTrials.gov identifier NCT02181075). Ten participants (age range, 49-68 years; average age, 60 years; four women) were treated from March 2015 to March 2017 by using a clinically approved focused ultrasound system to release doxorubicin from lyso-thermosensitive liposomes. Ultrasonic heating of target tumors (treated volume: 11-73 cm3 [mean ± standard deviation, 50 cm3 ± 26]) was monitored in six participants by using a minimally invasive temperature sensor; four participants were treated without real-time thermometry. For all participants, CT images were used with a patient-specific hyperthermia model to define focused ultrasound treatment plans. Feasibility was assessed by comparing model-prescribed focused ultrasound powers to those implemented for treatment. Safety was assessed by evaluating MR images and biopsy specimens for evidence of thermal ablation and monitoring adverse events. Results The mean difference between predicted and implemented treatment powers was -0.1 W ± 17.7 (n = 10). No evidence of focused ultrasound-related adverse effects, including thermal ablation, was found. Conclusion In this 10-participant study, the authors confirmed the feasibility of using focused ultrasound-mediated hyperthermia planning models to define treatment parameters that safely enabled targeted, noninvasive drug delivery to liver tumors while monitored with B-mode guidance and without real-time thermometry. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Dickey and Levi-Polyachenko in this issue.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Hipertermia Induzida/métodos , Neoplasias Hepáticas/terapia , Terapia por Ultrassom/métodos , Idoso , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estudos de Viabilidade , Feminino , Humanos , Lipossomos , Masculino , Pessoa de Meia-Idade , Veículos Farmacêuticos , Estudos Prospectivos
8.
Ultrasound Med Biol ; 45(4): 954-967, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30655109

RESUMO

Ultrasound-induced cavitation has been proposed as a strategy to tackle the challenge of inadequate extravasation, penetration and distribution of therapeutics into tumours. Here, the ability of microbubbles, droplets and solid gas-trapping particles to facilitate mass transport and extravasation of a model therapeutic agent following ultrasound-induced cavitation is investigated. Significant extravasation and penetration depths on the order of millimetres are achieved with all three agents, including the range of pressures and frequencies achievable with existing clinical ultrasound systems. Deeper but highly directional extravasation was achieved with frequencies of 1.6 and 3.3 MHz compared with 0.5 MHz. Increased extravasation was observed with increasing pulse length and exposure time, while an inverse relationship is observed with pulse repetition frequency. No significant cell death or any haemolytic activity in human blood was observed at clinically relevant concentrations for any of the agents. Overall, solid gas-trapping nanoparticles were found to enable the most extensive extravasation for the lowest input acoustic energy, followed by microbubbles and then droplets. The ability of these agents to produce sustained inertial cavitation activity whilst being small enough to follow the drug out of the circulation and into diseased tissue, combined with a good safety profile and the possibility of real-time monitoring, offers considerable potential for enhanced drug delivery of unmodified drugs in oncological and other biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Nanopartículas/administração & dosagem , Fosfolipídeos/administração & dosagem , Sonicação/métodos , Hexafluoreto de Enxofre/administração & dosagem , Imagens de Fantasmas
9.
Langmuir ; 35(31): 10014-10024, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30485112

RESUMO

Phospholipid coated microbubbles are currently in widespread clinical use as ultrasound contrast agents and under investigation for therapeutic applications. Previous studies have demonstrated the importance of the coating nanostructure in determining microbubble stability and its dependence upon both composition and processing method. While the influence of different phospholipids has been widely investigated, the role of other constituents such as emulsifiers has received comparatively little attention. Herein, we present an examination of the impact of polyethylene glycol (PEG) derivatives upon microbubble structure and properties. We present data using both pegylated phospholipids and a fluorescent PEG-40-stearate analogue synthesized in-house to directly observe its distribution in the microbubble coating. We examined microbubbles of clinically relevant sizes, investigating both their surface properties and population size distribution and stability. Domain formation was observed only on the surface of larger microbubbles, which were found to contain a higher concentration of PEG-40-stearate. Lipid analogue dyes were also found to influence domain formation compared with PEG-40-stearate alone. "Squeezing out" of PEG-40-stearate was not observed from any of the microbubble sizes investigated. At ambient temperature, microbubbles formulated with DSPE-PEG(2000) were found to be more stable than those containing PEG-40-stearate. At 37 °C, however, the stability in serum was found to be the same for both formulations, and no difference in acoustic backscatter was detected. This could potentially reduce the cost of PEGylated microbubbles and facilitate simpler attachment of targeting or therapeutic species. However, whether PEG-40-stearate sufficiently shields microbubbles to inhibit physiological clearance mechanisms still requires investigation.

10.
Lancet Oncol ; 19(8): 1027-1039, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30001990

RESUMO

BACKGROUND: Previous preclinical research has shown that extracorporeal devices can be used to enhance the delivery and distribution of systemically administered anticancer drugs, resulting in increased intratumoural concentrations. We aimed to assess the safety and feasibility of targeted release and enhanced delivery of doxorubicin to solid tumours from thermosensitive liposomes triggered by mild hyperthermia, induced non-invasively by focused ultrasound. METHODS: We did an open-label, single-centre, phase 1 trial in a single UK hospital. Adult patients (aged ≥18 years) with unresectable and non-ablatable primary or secondary liver tumours of any histological subtype were considered for the study. Patients received a single intravenous infusion (50 mg/m2) of lyso-thermosensitive liposomal doxorubicin (LTLD), followed by extracorporeal focused ultrasound exposure of a single target liver tumour. The trial had two parts: in part I, patients had a real-time thermometry device implanted intratumourally, whereas patients in part II proceeded without thermometry and we used a patient-specific model to predict optimal exposure parameters. We assessed tumour biopsies obtained before and after focused ultrasound exposure for doxorubicin concentration and distribution. The primary endpoint was at least a doubling of total intratumoural doxorubicin concentration in at least half of the patients treated, on an intention-to-treat basis. This study is registered with ClinicalTrials.gov, number NCT02181075, and is now closed to recruitment. FINDINGS: Between March 13, 2015, and March 27, 2017, ten patients were enrolled in the study (six patients in part I and four in part II), and received a dose of LTLD followed by focused ultrasound exposure. The treatment resulted in an average increase of 3·7 times in intratumoural biopsy doxorubicin concentrations, from an estimate of 2·34 µg/g (SD 0·93) immediately after drug infusion to 8·56 µg/g (5·69) after focused ultrasound. Increases of two to ten times were observed in seven (70%) of ten patients, satisfying the primary endpoint. Serious adverse events registered were expected grade 4 transient neutropenia in five patients and prolonged hospital stay due to unexpected grade 1 confusion in one patient. Grade 3-4 adverse events recorded were neutropenia (grade 3 in one patient and grade 4 in five patients), and grade 3 anaemia in one patient. No treatment-related deaths occurred. INTERPRETATION: The combined treatment of LTLD and non-invasive focused ultrasound hyperthermia in this study seemed to be clinically feasible, safe, and able to enhance intratumoural drug delivery, providing targeted chemo-ablative response in human liver tumours that were refractory to standard chemotherapy. FUNDING: Oxford Biomedical Research Centre, National Institute for Health Research.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias Hepáticas/tratamento farmacológico , Ultrassonografia , Idoso , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/administração & dosagem
11.
Adv Healthc Mater ; 7(12): e1800184, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696808

RESUMO

The efficient penetration of drugs into tumors is a major challenge that remains unmet. Reported herein is a strategy to promote extravasation and enhanced penetration using inertial cavitation initiated by focused ultrasound and cone-shaped gold nanoparticles that entrap gas nanobubbles. The cones are capable of initiating inertial cavitation under pressures and frequencies achievable with existing clinical ultrasound systems and of promoting extravasation and delivery of a model large therapeutic molecule in an in vitro tissue mimicking flow phantom, achieving penetration depths in excess of 2 mm. Ease of functionalization and intrinsic imaging capabilities provide gold with significant advantages as a material for biomedical applications. The cones show neither cytotoxicity in Michigan Cancer Foundation (MCF)-7 cells nor hemolytic activity in human blood at clinically relevant concentrations and are found to be colloidally stable for at least 5 d at 37 °C and several months at 4 °C.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ouro , Nanopartículas Metálicas , Neoplasias/tratamento farmacológico , Ondas Ultrassônicas , Ouro/química , Ouro/farmacologia , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-25585401

RESUMO

Ultrasound and microbubbles are often used to enhance drug delivery and the suggested mechanisms are extravasation and sonoporation. Drug delivery schemes with ultrasound and microbubbles at both low and high acoustic amplitudes have been suggested. A diagnostic ultrasound scanner may play a double role as both an imaging and a therapy device. It was not possible to accurately measure microbubble response with an ultrasound scanner for a large range of acoustic pressures and microbubble concentrations until now, mainly because of signal saturation issues. A method for continuously adjusting the receive gain of a scanner and limiting signal saturation was developed to accurately measure backscattered echoes from microbubbles for mechanical indexes (MIs) up to 2.1. The intensity of backscattered echoes from microbubbles increased quarticly with MI without reaching any limit. The signal intensity from microbubbles was found to be linear with concentration at both low and high MIs. However, at very high concentrations, acoustic shadowing occurs which limits the delivered acoustic pressure in deeper areas. The contrastto- tissue ratio was also measured and found to stay constant with MI. These results can be used to better guide drug delivery approaches and to also develop imaging techniques for therapy procedures.

13.
Ultrasound Med Biol ; 39(11): 2011-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23972488

RESUMO

Localized drug delivery with ultrasound-induced hyperthermia can enhance the therapeutic index of chemotherapeutic drugs by improving efficacy and reducing systemic toxicity. A novel in vitro method for the activation of drug-loaded thermosensitive liposomes is described. In particular, a dual-compartment, acoustically transparent container is used in which thermosensitive liposomes suspended in cell culture medium are immersed in a thermally absorptive medium, glycerol. Hyperthermia is induced with ultrasound in the glycerol, which in turn heats the culture medium by thermal conduction. The method approximately mimics the in vivo scenario of thermosensitive liposomes collected in the interstitial spaces of tumors, where ultrasound induces hyperthermia in the tumor tissue, which in turn heats the thermosensitive liposomes by conduction and induces release of the encapsulated drug. The acoustic conditions for the desired hyperthermia are derived theoretically and validated experimentally. Eighty percent release of doxorubicin from thermosensitive liposomes is achieved.


Assuntos
Preparações de Ação Retardada/química , Preparações de Ação Retardada/efeitos da radiação , Doxorrubicina/química , Doxorrubicina/efeitos da radiação , Lipossomos/química , Lipossomos/efeitos da radiação , Sonicação/métodos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/efeitos da radiação , Simulação por Computador , Difusão/efeitos da radiação , Relação Dose-Resposta à Radiação , Calefação/métodos , Modelos Químicos , Doses de Radiação
14.
Artigo em Inglês | MEDLINE | ID: mdl-23287915

RESUMO

Targeted drug delivery under image guidance is gaining more interest in the drug-delivery field. The use of microbubbles as contrast agents in diagnostic ultrasound provides new opportunities in noninvasive image-guided drug delivery. In the present study, the imaging and therapeutic properties of novel doxorubicin liposome-loaded microbubbles are evaluated. The results showed that at scanning settings (1.7 MHz and mechanical index 0.2), these microbubbles scatter sufficient signal for nonlinear ultrasound imaging and can thus be imaged in real time and be tracked in vivo. In vitro therapeutic evaluation showed that ultrasound at 1 MHz and pressures up to 600 kPa in combination with the doxorubicin liposomeloaded microbubbles induced 4-fold decrease of cell viability compared with treatment with free doxorubicin or doxorubicin liposome-loaded microbubbles alone. The therapeutic effectiveness is correlated to an ultrasound-triggered release of doxorubicin from the liposomes and an enhanced uptake of the free doxorubicin by glioblastoma cells. The results obtained demonstrate that the combination of ultrasound and the doxorubicin liposome-loaded microbubbles can provide a new method of noninvasive image-guided drug delivery.


Assuntos
Meios de Contraste/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/administração & dosagem , Microbolhas , Ultrassom/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacocinética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Cinética , Lipossomos/química , Lipossomos/farmacocinética , Imagens de Fantasmas , Estatísticas não Paramétricas
15.
Ultrasound Med Biol ; 38(4): 681-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22341047

RESUMO

In current drug delivery approaches, microbubbles and drugs can be co-administered while ultrasound is applied. The mechanism of microbubble interaction with ultrasound, the drug and the cells is not fully understood. The aim of this study was to investigate microbubble response to long ultrasonic pulses used in drug delivery approaches. Two different in vitro set-ups were considered: with the microbubbles diluted in an enclosure and with the microbubbles flowing in a capillary tube. Acoustic streaming, which influences the observed bubble response, was observed in "typical" drug delivery conditions in the first set-up. With the capillary set-up, streaming effects were avoided and accurate bubble responses were recorded. The diffraction pattern of the source greatly influences the bubble response and in different locations of the field different bubble responses are observed. At low nondestructive pressures, microbubbles can oscillate for thousands of cycles repeatedly. At high acoustic pressures (at 1 MHz), most bubble activity disappeared within about 100 µs despite the length of the pulse, mainly due to violent bubble destruction and subsequent accelerated diffusion.


Assuntos
Meios de Contraste/farmacologia , Sistemas de Liberação de Medicamentos , Fosfolipídeos/farmacologia , Hexafluoreto de Enxofre/farmacologia , Ultrassom/instrumentação , Acústica , Meios de Contraste/química , Desenho de Equipamento , Microbolhas , Fosfolipídeos/química , Hexafluoreto de Enxofre/química , Transdutores
16.
Radiology ; 262(2): 672-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156991

RESUMO

PURPOSE: To quantify a pseudoenhancement phenomenon observed during dynamic contrast material-enhanced ultrasonography (US) of the carotid artery, both in vitro and in vivo. MATERIALS AND METHODS: Ethical approval was obtained prior to commencing this prospective case series, and each patient gave written informed consent. Thirty-one patients with 50%-99% internal carotid artery stenosis underwent dynamic contrast-enhanced US of the carotid bifurcation with use of 2 mL of microbubbles. In the final 10 patients, an additional 1 mL bolus was administered after 15 minutes. Raw linear digital imaging and communications in medicine data were analyzed offline. Regions of interest were drawn within the common carotid artery lumen and immediately adjacent to the lumen in the near and far wall adventitia. Peak intensity was measured. An in vitro experiment with a single-channel flow phantom was also performed. This apparatus consisted of an 8-mm-diameter latex tube placed in a tissue-mimicking fluid. Microbubble concentrations of 0.02%, 0.1%, 0.5%, 1%, and 2% were pumped into the tube. Regions of interest were drawn in a similar fashion to the in vivo experiments, and peak intensity was measured. The Wilcoxon signed rank and paired t tests were used to compare the difference between the near and far wall signal intensities at each dose; a multiplication factor comparing near and far wall signal intensity was derived. RESULTS: The far wall of the common carotid artery was significantly more echogenic than the near wall at 2 mL contrast agent doses (P<.0001, n=31), and the far wall signal intensity increased synchronously with that of the lumen. The difference in signal intensity between near and far wall regions was significantly greater at 2 mL than at 1 mL (P=.012, n=10). In vitro, the phantom tubing demonstrated a similar pattern and magnitude of enhancement to that seen in vivo. CONCLUSION: A dose-dependent, nonlinear propagation artifact known as pseudoenhancement occurs in the far wall adventitia of the carotid artery and should not be mistaken as a marker of plaque vulnerability.


Assuntos
Artefatos , Estenose das Carótidas/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Fosfolipídeos/administração & dosagem , Hexafluoreto de Enxofre/administração & dosagem , Ultrassonografia/métodos , Idoso , Idoso de 80 Anos ou mais , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA