Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aliment Pharmacol Ther ; 45(3): 443-454, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27896824

RESUMO

BACKGROUND: Acute liver failure (ALF) is associated with significant morbidity and mortality. Studies have implicated the immune response, especially monocyte/macrophages as being important in dictating outcome. AIM: To investigate changes in the circulating monocytes and other immune cells serially in patients with ALF, relate these with cytokine concentrations, monocyte gene expression and patient outcome. METHODS: In a prospective case-control study in the Scottish Liver Transplant Unit, Royal Infirmary Edinburgh, 35 consecutive patients admitted with paracetamol-induced liver failure (POD-ALF), 10 patients with non-paracetamol causes of ALF and 16 controls were recruited. The peripheral blood monocyte phenotype was analysed by flow cytometry, circulating cytokines quantified by protein array and monocyte gene expression array performed and related to outcome. RESULTS: On admission, patients with worst outcomes after POD-ALF had a significant monocytopenia, characterised by reduced classical and expanded intermediate monocyte population. This was associated with reduced circulating lymphocytes and natural killer cells, peripheral cytokine patterns suggestive of a 'cytokine storm' and increased concentrations of cytokines associated with monocyte egress from the bone marrow. Gene expression array did not differentiate patient outcome. At day 4, there was no significant difference in monocyte, lymphocyte or natural killer cells between survivors and the patients with adverse outcomes. CONCLUSIONS: Severe paracetamol liver failure is associated with profound changes in the peripheral blood compartment, particularly in monocytes, related with worse outcomes. This is not seen in patients with non-paracetamol-induced liver failure. Significant monocytopenia on admission may allow earlier clarification of prognosis, and it highlights a potential target for therapeutic intervention.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Leucopenia/induzido quimicamente , Leucopenia/diagnóstico , Falência Hepática Aguda/induzido quimicamente , Monócitos/patologia , Adulto , Estudos de Casos e Controles , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/complicações , Doença Hepática Induzida por Substâncias e Drogas/mortalidade , Citocinas/metabolismo , Feminino , Humanos , Leucopenia/complicações , Leucopenia/mortalidade , Falência Hepática Aguda/sangue , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/mortalidade , Transplante de Fígado/efeitos adversos , Transplante de Fígado/mortalidade , Masculino , Monócitos/efeitos dos fármacos , Prognóstico , Análise de Sobrevida , Resultado do Tratamento
2.
Transl Psychiatry ; 6: e716, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26784970

RESUMO

DNA methylation (DNAm) plays a determining role in neural cell fate and provides a molecular link between early-life stress and neuropsychiatric disease. Preterm birth is a profound environmental stressor that is closely associated with alterations in connectivity of neural systems and long-term neuropsychiatric impairment. The aims of this study were to examine the relationship between preterm birth and DNAm, and to investigate factors that contribute to variance in DNAm. DNA was collected from preterm infants (birth<33 weeks gestation) and healthy controls (birth>37 weeks), and a genome-wide analysis of DNAm was performed; diffusion magnetic resonance imaging (dMRI) data were acquired from the preterm group. The major fasciculi were segmented, and fractional anisotropy, mean diffusivity and tract shape were calculated. Principal components (PC) analysis was used to investigate the contribution of MRI features and clinical variables to variance in DNAm. Differential methylation was found within 25 gene bodies and 58 promoters of protein-coding genes in preterm infants compared with controls; 10 of these have neural functions. Differences detected in the array were validated with pyrosequencing. Ninety-five percent of the variance in DNAm in preterm infants was explained by 23 PCs; corticospinal tract shape associated with 6th PC, and gender and early nutritional exposure associated with the 7th PC. Preterm birth is associated with alterations in the methylome at sites that influence neural development and function. Differential methylation analysis has identified several promising candidate genes for understanding the genetic/epigenetic basis of preterm brain injury.


Assuntos
Encéfalo/fisiopatologia , Metilação de DNA/fisiologia , Imagem de Difusão por Ressonância Magnética , Epigenômica/métodos , Recém-Nascido Prematuro/fisiologia , Feminino , Humanos , Recém-Nascido , Masculino , Análise de Componente Principal
3.
Cell Death Differ ; 22(7): 1106-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25361084

RESUMO

Glucocorticoid levels rise dramatically in late gestation to mature foetal organs in readiness for postnatal life. Immature heart function may compromise survival. Cardiomyocyte glucocorticoid receptor (GR) is required for the structural and functional maturation of the foetal heart in vivo, yet the molecular mechanisms are largely unknown. Here we asked if GR activation in foetal cardiomyocytes in vitro elicits similar maturational changes. We show that physiologically relevant glucocorticoid levels improve contractility of primary-mouse-foetal cardiomyocytes, promote Z-disc assembly and the appearance of mature myofibrils, and increase mitochondrial activity. Genes induced in vitro mimic those induced in vivo and include PGC-1α, a critical regulator of cardiac mitochondrial capacity. SiRNA-mediated abrogation of the glucocorticoid induction of PGC-1α in vitro abolished the effect of glucocorticoid on myofibril structure and mitochondrial oxygen consumption. Using RNA sequencing we identified a number of transcriptional regulators, including PGC-1α, induced as primary targets of GR in foetal cardiomyocytes. These data demonstrate that PGC-1α is a key mediator of glucocorticoid-induced maturation of foetal cardiomyocyte structure and identify other candidate transcriptional regulators that may play critical roles in the transition of the foetal to neonatal heart.


Assuntos
Coração Fetal/fisiologia , Glucocorticoides/farmacologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/fisiologia , Fatores de Transcrição/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
4.
Transl Psychiatry ; 4: e448, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25247593

RESUMO

Early-life stress (ELS) is known to be associated with an increased risk of neuropsychiatric and cardiometabolic disease in later life. One of the potential mechanisms underpinning this is through effects on the epigenome, particularly changes in DNA methylation. Using a well-phenotyped cohort of 83 men from the Helsinki Birth Cohort Study, who experienced ELS in the form of separation from their parents during childhood, and a group of 83 matched controls, we performed a genome-wide analysis of DNA methylation in peripheral blood. We found no differences in DNA methylation between men who were separated from their families and non-separated men; however, we did identify differences in DNA methylation in association with the development of at least mild depressive symptoms over the subsequent 5-10 years. Notably, hypomethylation was identified at a number of genes with roles in brain development and/or function in association with depressive symptoms. Pathway analysis revealed an enrichment of DNA methylation changes in pathways associated with development and morphogenesis, DNA and transcription factor binding and programmed cell death. Our results support the concept that DNA methylation differences may be important in the pathogenesis of psychiatric disease.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Homens/psicologia , Transtornos Mentais/genética , Estresse Psicológico/genética , Idoso , Estudos de Coortes , Epigenômica , Feminino , Finlândia , Humanos , Masculino , Pessoa de Meia-Idade
5.
Toxicology ; 160(1-3): 81-6, 2001 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-11246127

RESUMO

The carcinogenicity of 1,3-butadiene (BD) varies greatly in the rodent species in which 2-year bioassay studies were completed. This raises the question of whether the risk of BD exposure in humans is more like that of the sensitive species, the mouse, or more like that of the resistant species, the rat. Numerous studies have indicated that one reason for the species differences in response to BD is that the blood and tissues of BD-exposed mice contain high levels of both the mono- and the diepoxide metabolite, while the tissue and blood of exposed rats contain very little of the diepoxide. The diepoxide is far more mutagenic than the monoepoxide, and so it is reasonable that the diepoxide plays a major role in tumor induction in the mouse. If the diepoxide is the primary carcinogen, the presence of the diepoxide in the blood of exposed individuals should be an indicator of risk from BD exposure. In this study, we report that the diepoxide is sufficiently stable to be excreted into the urine of exposed rodents and that the urinary levels of the diepoxide reflect the relative levels of the compound in the blood of the two species. The conclusion is that urinary diepoxide should be investigated as a potential biomarker of the formation of the diepoxide in humans exposed to BD.


Assuntos
Butadienos/farmacocinética , Carcinógenos/farmacocinética , Compostos de Epóxi/sangue , Compostos de Epóxi/urina , Animais , Biomarcadores/urina , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
6.
Arch Toxicol ; 72(10): 609-21, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9851676

RESUMO

Trans- and cis-1,2-dichloroethylene (DCE) isomers inhibit their own metabolism in vivo by inactivation of the metabolizing enzyme, presumably the cytochrome P450 isoform, CYP2E1. In this study, we examined cytochrome P450 isoform-specific inhibition by three chloroethylenes, cis-DCE, trans-DCE, and trichloroethylene (TCE), and evaluated several kinetic mechanisms of enzyme inhibition with physiological models of inhibition. Trans-DCE was more potent than cis-DCE, and both were much more effective than TCE in inhibiting CYP2E1. The kinetics of in vitro loss of p-nitrophenol hydroxylase (pNP-OH) activity (a marker of CYP2E1) in microsomal incubations and of the in vivo gas uptake results were most consistent with a mechanism in which inhibition of the metabolizing enzyme (CYP2E1) was presumed to be related to interaction of a reactive DCE metabolite with remaining substrate-bound, active CYP2E1. The kinetics of inhibition by TCE, a weak inhibitor in vitro, were very different from that of the dichloroethylenes. With TCE, parent compound concentrations influenced enzyme loss. Trans-DCE was a more potent inhibitor of CYP2E1 than cis-DCE based on both in vivo and in vitro studies. Quantitative differences in the inhibitory properties of the 1,2-DCE isomers may be due to the different stability of epoxides formed from bioactivation by CYP2E1. Epoxide intermediates of DCE metabolism, reacting by water addition, would yield dialdehyde, a potent cross-linking reagent.


Assuntos
Inibidores do Citocromo P-450 CYP2E1 , Dicloroetilenos/farmacologia , Tricloroetileno/farmacologia , Cloreto de Vinil/farmacologia , Animais , Citocromo P-450 CYP2E1/metabolismo , Técnicas In Vitro , Masculino , Modelos Químicos , Estrutura Molecular , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo
7.
Toxicol Sci ; 41(2): 167-73, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9520352

RESUMO

1,3-Butadiene (BD), a compound used extensively in the rubber industry, is weakly carcinogenic in Sprague-Dawley rats after chronic exposures to concentrations of 1000 and 8000 ppm. Conversely, in B6C3F1 mice, tumors occur after chronic exposures to concentrations as low as 6.25 ppm. Previously, we have shown that tissue concentrations of the mutagenic BD metabolites, butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2), are present in greater concentrations in mice than in rats following acute exposures to low levels (100 ppm or less). This disparity was particularly significant for the diepoxide. We hypothesized that if these epoxides are involved in the carcinogenic response of BD, then they will also be present in rat tissues at relatively high concentrations following exposures to 8000 ppm BD. In the present study, concentrations of the BD epoxides, BDO and BDO2, were determined in blood of female Sprague-Dawley rats following a single 6-h exposure and 10 repeated exposures to a target concentration of 8000 ppm BD. Concentrations of these epoxides were also determined in a number of other tissues, including the primary rat target organ-mammary gland-following 10 repeated exposures. Blood concentrations of BDO were 4030 pmol/g +/- 191 following a 6-h exposure and were 18% lower following the 10-day exposure. Blood concentrations of BDO2, following the 8000 ppm exposures, were very similar to those previously observed after exposures to 62.5 ppm BD (11 +/- 1 and 17 +/- 1 pmol/g following exposures of 6h and 6h/day for 10 days, respectively.) Concentrations of BDO ranged from 740 +/- 110 (femur) to 8990 +/- 1150 (fat) pmol/g tissue. Concentrations of BDO2 were similar among eight tissues analyzed, ranging from 5 +/- 1 (femur) to 17 +/- 3 (heart) pmol/g tissue. Tissue concentrations of butadiene monoepoxide were increased by 17- to 50-fold in tissues from rats exposed by inhalation to 8000 ppm BD as compared to tissues from rats exposed to 62.5 ppm BD. Based on earlier studies at our institute the internal dose of BD increases approximately 14-fold in the 8000 ppm-exposed rats compared to rats exposed to 62.5 ppm BD. Concentrations of butadiene diepoxide in rat tissues following an exposure to 8000 ppm BD were similar to those observed in rat tissues following exposures to 62.5 ppm BD. This study shows that pathways responsible for the accumulation of BDO2 in rats are saturated following low-level BD exposures. This suggests that the primary determinant of BD tumorigenicity in rats is not butadiene diepoxide. The high levels of BDO observed in rat mammary tissue suggest that this metabolite may be a more important determinant of BD carcinogenesis in the rat.


Assuntos
Butadienos/farmacocinética , Carcinógenos/farmacocinética , Compostos de Epóxi/metabolismo , Mutagênicos/farmacocinética , Animais , Biotransformação , Feminino , Exposição por Inalação , Ratos , Ratos Sprague-Dawley
8.
Carcinogenesis ; 19(4): 655-62, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9600351

RESUMO

Enzymes of the nasal tissue, one of the first tissues to contact inhaled toxicants, are relatively resistant to induction by traditional inducers. Because tobacco smoke has been shown to induce cytochrome P450 1A1 (CYP1A1) in rat and human lung tissue, we hypothesized that it would also alter levels of xenobiotic-metabolizing enzymes in nasal mucosae. In the present study, the effect of mainstream cigarette smoke (MCS) on nasal CYP1A1, CYP1A2 and CYP2B1/2 was explored. Four groups of 30 F344 rats were exposed to MCS (100 mg total particulate matter/m3) or filtered air for 2 or 8 weeks. Western analysis of microsomes from nasal tissue of MCS-exposed rats showed an induction of CYP1A1 in respiratory and olfactory mucosae, as well as liver, kidney and lung. Relative to controls, CYP1A2 levels increased slightly in the liver and olfactory mucosa. CYP2B1/2, which increased in the liver, appeared to decrease in upper and lower respiratory tissues. Little to no immunoreactivity with CYP1A1 antibody was observed in fixed nasal sections of control rats, yet intense immunoreactivity was seen in epithelia throughout the nasal cavity of MCS-exposed rats. Ethoxyresorufin O-deethylase activity (associated with CYP1A1/2) decreased approximately 2-fold in olfactory mucosa, but increased in non-nasal tissues of rats exposed to MCS. Methoxy- and pentoxyresorufin O-dealkylase activities (associated with CYP1A2 and CYP2B1/2, respectively) decreased in olfactory and respiratory mucosae, as well as lung (CYP2B1/2), yet increased in liver. These data suggest that xenobiotic-metabolizing enzymines of the nasal mucosae may be regulated differently than other tissues.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Isoenzimas/biossíntese , Mucosa Nasal/efeitos dos fármacos , Fumaça/efeitos adversos , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Indução Enzimática , Imuno-Histoquímica , Exposição por Inalação , Isoenzimas/metabolismo , Masculino , Mucosa Nasal/enzimologia , Mucosa Nasal/patologia , Plantas Tóxicas , Ratos , Ratos Endogâmicos F344 , Nicotiana
9.
Mutat Res ; 380(1-2): 43-59, 1997 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-9385389

RESUMO

High levels of xenobiotic-metabolizing enzymes occur in the nasal mucosa of all species studied. In certain species, including rats and rabbits, unique enzymes are present in the nasal mucosa. The function of these enzymes is not well understood, but it is thought that they play a role in protecting the lungs from toxicity of inhalants. The observation that several nasal xenobiotic-metabolizing enzymes accept odorants as substrates may indicate that these enzymes also play a role in the olfactory process. Xenobiotic-metabolizing enzymes were found in the nasal cavity around 15 years ago. Since that time, much has been learned about the nature of the enzymes and the substrates they accept. In the present review, this information is summarized with special attention to species differences in xenobiotic-metabolizing enzymes of the nasal cavity. Such differences may be important in interpreting the results of toxicity assays in animals because rodents are apparently more susceptible to nasal toxicity after exposure to inhalants than are humans.


Assuntos
Cavidade Nasal/enzimologia , Mucosa Nasal/enzimologia , Xenobióticos/metabolismo , Administração por Inalação , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Indução Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Especificidade de Órgãos , Coelhos , Ratos , Especificidade da Espécie
10.
Toxicology ; 123(1-2): 125-34, 1997 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-9347927

RESUMO

1,3-Butadiene (BD), a compound used extensively in the rubber industry, is a potent carcinogen in mice and a weak carcinogen in rats in chronic carcinogenicity bioassays. While many chemicals are known to alter their own metabolism after repeated exposures, the effect of exposure prior to BD on its in vivo metabolism has not been reported. The purpose of the present research was to examine the effect of repeated exposure to BD on tissue concentrations of two mutagenic BD metabolites, butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2). Concentrations of BD epoxides were compared in several tissues of rats and mice following a single exposure or ten repeated exposures to a target concentration of 62.5 ppm BD. Female Sprague-Dawley rats and female B6C3F1 mice were exposed to BD for 6 h or 6 h x 10 days. BDO and BDO2 were quantified in blood and several other tissues following preparation by cryogenic vacuum distillation and analysis by multidimensional gas chromatography-mass spectrometry. Blood and lung BDO concentrations did not differ significantly (P < or = 0.05) between the two exposure regimens in either species. Following multiple exposures to BD, BDO levels were 5- and 1.6-fold higher (P < or = 0.05) in mammary tissue and 2- and 1.4-fold higher in fat tissue of rats and mice, respectively, as compared with single exposures. BDO2 levels also increased in rat fat tissue following multiple exposures to BD. However, in mice, levels of this metabolite decreased by 15% in fat, by 28% in mammary tissue and by 34% in lung tissue following repeated exposures to BD. The finding that the mutagenic epoxide BDO, which is the precursor to the highly mutagenic BDO2, accumulates in rodent fat may be important in assessing the potential risk to humans from inhalation of BD.


Assuntos
Butadienos/toxicidade , Carcinógenos/toxicidade , Compostos de Epóxi/metabolismo , Tecido Adiposo/metabolismo , Administração por Inalação , Animais , Butadienos/administração & dosagem , Butadienos/metabolismo , Carcinógenos/administração & dosagem , Carcinógenos/metabolismo , Compostos de Epóxi/sangue , Feminino , Fêmur/metabolismo , Pulmão/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Ratos , Ratos Sprague-Dawley
11.
Carcinogenesis ; 18(9): 1825-32, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9328181

RESUMO

While tobacco smoke has been conclusively identified as a lung carcinogen, there is much debate over which smoke constituent(s) are primarily responsible for its carcinogenicity. Previous studies in our laboratory suggested that highly lipophilic carcinogens are slowly absorbed in the thicker epithelium of the conducting airways, potentially allowing for substantial local metabolism. The bioactivation of polycyclic aromatic hydrocarbons in airway epithelium may, hence, be important in tobacco smoke-induced carcinogenesis. In the present study, the hypothesis of slow absorption and substantial local metabolic activation of highly lipophilic carcinogen in airway epithelium was tested in dogs. A single dose of tritiated benzo[a]pyrene (BaP) dissolved in a saline/phospholipid suspension was instilled in the trachea, just anterior to the carina. At intervals of a few minutes up to 30 min over a 3-h period, blood samples were drawn from the azygous vein, which drains the area around the point of instillation, and from the systemic circulation. Tissue samples were taken at the end of the experiment. The concentration of BaP with depth into the tracheal mucosa was determined with autoradiography. BaP was slowly absorbed into the trachea with a half-time of approximately 73 min, which is consistent with diffusion-limited passage through the epithelium and lead to local doses in the tracheal epithelium that were more than a 1000-fold those of other tissues. The long retention of BaP in the epithelium provided the local metabolizing enzymes with high substrate levels over a long period, resulting in extensive metabolism. At 3 h after the exposure, 23% of the BaP-equivalent activity remained in the tracheal mucosa. Of this fraction, 13% was parent compound, 28% was organic extractable, 31% was water-soluble, and 28-7% of the instilled dose was bound to tracheal tissues. These results explain the tendency of highly lipophilic carcinogens, such as BaP, to induce tumors at the site of entry and, furthermore, indicate that the highly lipophilic components of tobacco smoke and polluted air may be the most important contributors to lung tumors of the conducting airways.


Assuntos
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Traqueia/metabolismo , Absorção , Animais , Autorradiografia , Benzo(a)pireno/metabolismo , Carcinógenos/metabolismo , Cromatografia Líquida de Alta Pressão , Cães , Epitélio/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Radiometria
12.
Toxicol Appl Pharmacol ; 142(1): 22-30, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9007030

RESUMO

Two members of the cytochrome P450 2A subfamily, CYP2A10 and 2A11, are abundant nasal enzymes previously characterized in rabbit olfactory microsomes. Rabbit CYP2A is active toward a number of nasal toxicants, including the rat nasal procarcinogen hexamethylphosphoramide (HMPA). While P450s immunochemically related to the rabbit CYP2As have been detected in rat and human nasal mucosa, confirmation of these enzymes as members of the CYP2A subfamily and efforts to characterize their ability to bioactivate toxicants have been limited. In the present study, the regional distribution and cell-specific expression of CYP2A in the rat nasal cavity were examined using an antibody to rabbit CYP2A10/11. In sections of the anterior nose, immunoreactive CYP2A was present in ciliated cells of the nasal respiratory epithelium and cuboidal epithelial cells of the nasal transitional epithelium, but was absent in squamous epithelial cells. The most intense immunostaining was observed in the posterior nose. Olfactory sustentacular cells and Bowman's gland cells in sections posterior to the nasal papilla stained most intensely. Western blot analysis revealed that anti-CYP2A10/11 recognized a sharp band of approximately 50 kDa in nasal respiratory and olfactory microsomes, supporting the premise that the antibody is reacting with a cytochrome P450 enzyme. The nasal expression of CYP2A6 mRNA--a member of the human CYP2A subfamily having a high degree of homology to rabbit 2A10 and 2A11--was examined in human surgical patients. Middle turbinectomy tissues--largely composed of nasal respiratory epithelia--from 11 patients were analyzed for the presence of CYP2A6 using reverse transcription-polymerase chain reaction (RT-PCR). Identification of CYP2A6 was confirmed by DNA sequencing of RT-PCR products. CYP2A6 mRNA was detected in all of the human samples analyzed. In additional experiments, human CYP2A6 metabolized HMPA to formaldehyde, suggesting that this compound might cause nasal toxicity in humans. The identification of CYP2A cytochromes in rat and human nasal tissues may have important implications for risk assessment of inhaled xenobiotics.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Carcinógenos/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Hempa/farmacocinética , Oxigenases de Função Mista/metabolismo , Mucosa Nasal/enzimologia , Animais , Biotransformação , Citocromo P-450 CYP2A6 , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450 , Humanos , Pulmão/metabolismo , Masculino , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo , Oxigenases de Função Mista/genética , Mucosa Nasal/ultraestrutura , Mucosa Olfatória/enzimologia , Mucosa Olfatória/ultraestrutura , Especificidade de Órgãos , Reação em Cadeia da Polimerase , Pró-Fármacos/farmacocinética , RNA Mensageiro/análise , Coelhos , Ratos , Ratos Endogâmicos F344 , Especificidade da Espécie
13.
J Toxicol Environ Health ; 49(2): 145-59, 1996 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-8874533

RESUMO

Bromodichloromethane (BDCM), a carcinogenic water disinfection by-product, has been shown to be metabolized to intermediates that covalently bind to lipids and proteins, and this binding has been associated with trihalomethane-induced renal and hepatic toxicity. In this study, the effects of glutathione (GSH) on in vivo BDCM toxicity and in vitro BDCM macromolecular binding were evaluated. The in vivo toxicity of BDCM in animals pretreated with buthionine sulfoximine (BSO, a glutathione synthesis inhibitor) and in untreated male Fischer 344 rats was investigated. In another experiment, covalent binding to protein and lipid was quantified after [14C]BDCM was incubated with hepatic microsomal and S9 fractions and renal microsomes from F344 rats, under aerobic and anaerobic conditions, with and without added GSH. After oral dosing with BDCM, the BSO-pretreated animals had greatly increased levels of serum indicators of hepatotoxicity and serum and urinary indicators of nephrotoxicity compared to those in animals dosed solely with BDCM. Histopathological examination revealed that hepatic necrosis was more severe than renal necrosis in the BSO-treated rats. When GSH was added to an aerobic incubation, protein binding was decreased in hepatic microsomal and S9 fractions by 92 and 83%, respectively. GSH also decreased lipid binding by 55% in hepatic microsomal incubations carried out under anaerobic conditions. Addition of GSH decreased renal microsomal protein (aerobic) and lipid binding (anaerobic) by 20 and 43%, respectively. These data indicate that GSH is an important protective factor in the toxicity associated with BDCM.


Assuntos
Glutationa/fisiologia , Hidrocarbonetos Halogenados/toxicidade , Metabolismo dos Lipídeos , Microssomos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/química , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Frações Subcelulares/efeitos dos fármacos , Trialometanos
14.
Toxicology ; 113(1-3): 17-22, 1996 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-8901878

RESUMO

Species differences in the metabolism of 1,3-butadiene (BD) have been studied in an effort to explain the major differences observed in the responses of mice, the sensitive species, and rats, the resistant species, to the toxicity of inhaled BD. BD is metabolized by the same metabolic pathways in all species studied, but there are major species differences in the quantitative aspects of those pathways. Of the species studied, mice are the most efficient at metabolizing BD to the initial metabolite, the monoepoxide (BDO). Mice either convert most of the BDO to the diepoxide (BDO2), the most mutagenic of the BD metabolites, or form conjugates of the BDO with glutathione (GSH). Rats, on the other hand, are less active at forming BDO, oxidize very little of the BDO to BDO2, and form GSH conjugates with either the BDO or its hydrolysis product, butenediol. Primates convert even less of inhaled BD to BDO and hydrolyze most of the BDO to the butenediol. The extent to which primates form BDO2 is unknown. Because of the association of high levels of the highly mutagenic BDO2 with the sensitive rodent strain, it is important to determine the production of this metabolite in primates, particularly humans.


Assuntos
Butadienos/metabolismo , Carcinógenos/metabolismo , Animais , Glutationa/metabolismo , Hidrólise , Camundongos , Oxirredução , Ratos , Especificidade da Espécie
15.
Toxicology ; 113(1-3): 322-5, 1996 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-8901918

RESUMO

Levels of butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2) were compared in tissues of male Sprague-Dawley rats and male B6C3F1 mice and in tissues of male and female Sprague-Dawley rats following inhalation exposures to 62.5 ppm 1,3-butadiene (BD). In male rats, BDO2 levels were highest in blood and were present at a concentration of only 5 +/- 1 pmol/g. Following a 6-h exposure, the concentration of BDO2 in the blood, femurs, lung and fat of female rats was 3 to 7-fold that of male rats. Levels of BDO were similar in tissues of female and male rats. Generally, levels of BDO were approximately 3 to 8-fold greater in mouse tissues as compared with rat tissues following 4-h exposures to BD. In blood, 204 +/- 15 pmol/g BDO2 was detected in male mice, while in rats, blood BDO2 levels were 5 +/- 1 pmol/g. This study shows marked species differences in tissue levels of BD epoxides, particularly BDO2, in rats and mice, and is the first to show gender differences in BD metabolism.


Assuntos
Butadienos/metabolismo , Carcinógenos/metabolismo , Compostos de Epóxi/metabolismo , Administração por Inalação , Animais , Butadienos/administração & dosagem , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Especificidade da Espécie
16.
Carcinogenesis ; 16(11): 2875-8, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7586213

RESUMO

1,3-Butadiene (BD), a compound used extensively in the rubber industry, is carcinogenic in the male and female Sprague-Dawley rats after chronic exposures to 1000 and 8000 p.p.m. In terms of incidence of tumors the majority were in mammary tissue, thus the incidence of tumors in female rats exceeded that in males in chronic carcinogenicity studies. In the present study the production and disposition of butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2), mutagenic BD metabolites, were examined in male and female Sprague-Dawley rats following a low level inhalation exposure to BD. The rats were exposed to a target concentration of 62.5 p.p.m. BD by nasal inhalation for 6 h. Immediately after exposure blood, bone marrow, lung and fat samples were removed from all the animals and mammary tissue was removed from females. The samples were prepared by cryogenic-vacuum line distillation and analyzed for the epoxides using multidimensional gas chromatography-mass spectrometry. Levels of BDO in the blood were 25.9 +/- 2.9 and 29.4 +/- 2 pmol/g in male and females respectively. The levels of this metabolite were also similar in males and females in the other tissues examined. The greatest amounts of BDO were in fat (175 +/- 21 and 203 +/- 13 pmol/g in males and females respectively). Levels of BDO2 were approximately 5-fold greater in the blood of female rats compared with male rats. In the other tissues examined BDO2 was also consistently greater in tissues from females. In fat BDO2 was present at a concentration of 7.7 +/- 1.3 and 1.1 +/- 0.1 pmol/g tissue in females and males respectively. Mammary tissue from female rats contained 10.5 +/- 2.4 pmol/g BDO2, a level slightly lower than that observed in blood. The ratios of the two epoxides differed markedly between males and females in all tissues examined. Differences were most pronounced in lung and fat tissues, where BDO/BDO2 ratios were 9 and 0.6 (lung) and 159 and 26 (fat) for males and females respectively. This study is the first to describe a gender difference in the metabolism of BD. The greater production of the highly mutagenic BDO2 in females may play a role in the increased incidence of mammary tumors after chronic exposure to BD.


Assuntos
Butadienos/metabolismo , Carcinógenos/metabolismo , Administração por Inalação , Animais , Butadienos/administração & dosagem , Compostos de Epóxi/metabolismo , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Especificidade da Espécie
17.
Carcinogenesis ; 16(8): 1723-31, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7634396

RESUMO

1,3-Butadiene (BD), a chemical used extensively in the production of styrene-butadiene rubber, is carcinogenic in Sprague-Dawley rats and B6C3F1 mice. Chronic inhalation studies revealed profound species differences in the potency and organ-site specificity of BD carcinogenesis between rats and mice. BD is a potent carcinogen in mice and a weak carcinogen in rats. Previous studies from our laboratory and others have shown marked differences between rats and mice in the metabolism of BD, which may account for species differences in carcinogenicity. The purpose of the present study was to examine the production and disposition of two mutagenic BD metabolites, butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2), in blood and other tissues of rats and mice during and following inhalation exposures to a target concentration of 62.5 p.p.m. BD. BDO was increased above background in blood, bone marrow, heart, lung, fat, spleen and thymus tissues of mice after 2 h and 4 h exposures to BD. In rats, levels of BDO were increased in blood, fat, spleen and thymus tissues. No increases in BDO were observed in rat lungs. BDO2, the more mutagenic of the two epoxides, was increased in the blood of rats and mice at 2 and 4 h after initiation of exposure to BD. In mice, BDO2 was detected in all tissues examined immediately following the 4 h exposure. This metabolite was detected in heart, lung, fat, spleen and thymus of rats, but at levels 40- to 160-fold lower than those seen in mice. Immediately after the 4 h exposure, blood levels of BDO2 were 204 +/- 15 pmol/g for mice but were 41-fold lower for rats. In the sensitive mouse target organs, heart and lungs, levels of BDO2 exceeded BDO levels immediately after the exposure. This study shows that the levels of BD epoxides are markedly greater in the mouse BD target organs. The high concentrations of BDO2 in these organs suggest that this compound may be particularly important in BD-induced carcinogenesis. Thus, although BD is oxidatively metabolized by similar metabolic pathways in rats and mice, the substantial quantitative differences in tissue levels of mutagenic epoxides between species may be responsible for the increased sensitivity of mice to BD-induced carcinogenicity.


Assuntos
Butadienos/metabolismo , Carcinógenos/metabolismo , Administração por Inalação , Animais , Butadienos/administração & dosagem , Compostos de Epóxi/metabolismo , Masculino , Camundongos , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
18.
Chem Res Toxicol ; 8(2): 182-7, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7766800

RESUMO

A new method was developed to quantify the levels of 1,3-butadiene (BD), butadiene monoxide (BDO), and butadiene diepoxide (BDO2) in blood. The method was based on vacuum distillation of tissues followed by analysis of the distillates using multidimensional GC/MS. Metabolites isolated from blood by vacuum distillation were condensed into a cold trap. After warming the traps to room temperature, BD and BDO were sampled from the trap vapor phase. BDO2 was extracted from the codistilled water phase using ethyl acetate. Samples were analyzed using a multidimensional GC system equipped with a custom-built interface. The method was validated by analysis of 0.75-mL aliquots of mouse blood spiked with 5.0, 3.4, and 0.55 nmol of BD, BDO, and BDO2, respectively. The recoveries of analytes were 96 +/- 18%, 125 +/- 15%, and 98 +/- 12%, respectively (mean +/- SD, n = 6). Kinetic studies indicated no loss of BDO and BDO2 in blood held at room temperature in closed containers for up to 1 h. The method was applied to blood samples from B6C3F1 mice and Sprague-Dawley rats exposed by inhalation (nose-only) to 100 ppm BD for 4 h. Blood levels of BD and BDO in exposed rats were 4.1 +/- 1.0 and 0.10 +/- 0.06 microM, respectively (mean +/- SD, n = 6). Levels of BDO2 were below the limits of detection (0.01 nmol/mL). Blood levels of BD, BDO, and BDO2 in mice exposed to 100 ppm BD for 4 h were 2.9 +/- 1.3, 0.38 +/- 0.14, and 0.33 +/- 0.19 microM, respectively (mean +/- SD, n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Butadienos/sangue , Compostos de Epóxi/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Animais , Carcinógenos/análise , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
19.
Toxicology ; 94(1-3): 3-18, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7801327

RESUMO

The carcinogenic water disinfection byproduct, bromodichloromethane (BDCM), produces renal and hepatic toxicity in rodents in acute and subchronic studies. In the present investigation, female rats and mice (n = 6) were dosed daily for 5 consecutive days with BDCM (dissolved in an aqueous, 10% Emulphor solution) by gavage. Rats received 75, 150 and 300 mg BDCM/kg body weight/day and mice received 75 and 150 mg BDCM/kg body weight/day. Two rats in the 300 mg/kg/day treatment group died on day 5. On day 6, the animals were sacrificed and serum samples were taken for analysis of indicators of hepatic and renal toxicity. Livers and kidneys were excised and samples taken for histopathological evaluation. Portions of the livers were also utilized to produce microsomes for analysis of cytochrome P450 enzyme activities and total P450 content. Total hepatic cytochrome P450 was decreased in rats dosed with 150 and 300 mg BDCM/kg body weight/day, but was not significantly affected in BDCM-treated mice. Serum lactate (LDH) and sorbitol (SDH) dehydrogenase, aspartate aminotransferase (AST), creatinine and blood urea nitrogen were increased above those of controls in rats dosed with 300 mg BDCM/kg/day. These data suggested that hepatic and renal damage had occurred in this treatment group. This was confirmed by histopathological analyses which revealed that lesions occurred in both hepatic and renal tissues from rats dosed with 150 and 300 mg BDCM/kg/day. The hepatic lesions were centrilobular and primarily consisted of vacuolar degeneration. The hepatotoxicity indicators alanine aminotransferase (ALT) and SDH were increased in mice dosed with 150 mg BDCM/kg/day. However, no histopathological lesions were observed in these animals. This study shows that BDCM is both hepatotoxic and nephrotoxic to female rats after repeated dosing, but is only weakly hepatotoxic to female mice at the administered doses. Also, reduced activities of hepatic cytochrome P450 were observed in rats, but not mice. These species differences in toxicity and xenobiotic metabolizing enzyme inhibition caused by BDCM suggest that an understanding of the mechanism of toxicity of this compound will be critical when extrapolating rodent toxicity data to humans for this environmental pollutant.


Assuntos
Hidrocarbonetos Halogenados/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Citocromo P-450 CYP1A1 , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Hidrocarbonetos Halogenados/metabolismo , Rim/patologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/enzimologia , Tamanho do Órgão/efeitos dos fármacos , Oxirredutases/metabolismo , Ratos , Ratos Endogâmicos F344 , Especificidade da Espécie , Trialometanos
20.
Toxicol Lett ; 71(1): 77-85, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8140592

RESUMO

3-Methylindole (3MI) is a species- and organ-selective pneumotoxin; goats are the most susceptible species, mice are intermediate in susceptibility, and rabbits are the least susceptible species to its toxicity. Four different cDNA probes representative of human cytochrome P450 genes CYP2F1, CYP4B1, CYP2A6, and CYP2B6 were hybridized against RNA from lung and liver tissues of goat, mouse and rabbit. Transcripts representative of pulmonary P450s CYP2F1, CYP4B1 and CYP2B6 were present in goat lung. Transcripts for the CYP2F1 and CYP4B1 genes were observed in rabbit and mouse lung. In general, the probes selectively hybridized to pulmonary but not hepatic transcripts of all three species. The differences in susceptibilities among the three species could not be explained by the lack of 4B1 and 2F1 transcripts in the lungs of mice or rabbits that are less susceptible than goats, but the selective expression in the lung tissues of all three species may participate in the organ-selective bioactivation and pulmonary toxicity of 3MI in these species.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Sistema Enzimático do Citocromo P-450/genética , Pulmão/enzimologia , RNA Mensageiro/genética , Escatol/toxicidade , Animais , Northern Blotting , Citocromo P-450 CYP2A6 , Sondas de DNA , Cabras , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Pulmão/efeitos dos fármacos , Camundongos , Oxigenases de Função Mista/genética , Especificidade de Órgãos , RNA Mensageiro/metabolismo , Coelhos , Especificidade da Espécie , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA